ﻻ يوجد ملخص باللغة العربية
The International Celestial Reference Frame (ICRF, Ma et al. 1998) is currently the best realization of a quasi-inertial reference system. It is based on more than 10 years of cumulated geodetic and astrometric VLBI observations of compact extragalactic objects at centimetric wavelengths. In the perspective of the realization of an accurate optical counterpart of the ICRF using future space astrometry missions like GAIA or SIM, this paper investigates the consistency of celestial reference frames realized through the same subset of compact extragalactic radio sources at optical wavelengths. Celestial reference frames realized in radio wavelengths with the VLBA Calibrator Survey (VCS) data and in optical wavelengths with the Sloan Digital Sky Survey (SDSS) data (DR3 quasar catalogue and DR5) are compared in terms of radio-optical distances between the common sources, global rotation of the axes and offset of the equator.
The current state of the link problem between radio and optical celestial reference frames is considered. The main objectives of the investigations in this direction during the next few years are the preparation of a comparison and the mutual orienta
An analysis of the source position differences between VLBI-based ICRF and $Gaia$-CRF catalogues is a key step in assessing their systematic errors and determining their mutual orientation. One of the main factors that limits the accuracy of determin
In this paper we outline several problems related to the realization of the international celestial and terrestrial reference frames ICRF and ITRF at the millimeter level of accuracy, with emphasis on ICRF issues. The main topics considered are: anal
A possible method for linking the optical Gaia Celestial Reference Frame (GCRF) to the VLBI-based International Celestial Reference Frame (ICRF) is to use radio stars in a manner similar to that in the linking of the Hipparcos Celestial Reference Fra
Astrometry, the measurement of positions and motions of the stars, is one of the oldest disciplines in Astronomy, extending back at least as far as Hipparchus discovery of the precession of Earths axes in 190 BCE by comparing his catalog with those o