ترغب بنشر مسار تعليمي؟ اضغط هنا

Complexity on Small Scales II: Metallicities and Ages in the Leo II Dwarf Spheroidal Galaxy

99   0   0.0 ( 0 )
 نشر من قبل Andreas Koch
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present metallicities and ages for 52 red giants in the remote Galactic dwarf spheroidal (dSph) galaxy Leo II. These stars cover the entire surface area of Leo II and are radial velocity members. We obtained medium-resolution multi-fiber spectroscopy with ESO/VLTs FLAMES spectrograph. The metallicities were determined based on the near-infrared Ca II triplet. The resulting metallicity distribution (MD) is asymmetric and peaks at [Fe/H]=-1.74 dex on the Carretta & Gratton scale. The full range in metallicities extends from -2.4 to -1.1 dex. As in other dSphs, no extremely metal-poor red giants were found. We compare Leo IIs observed MD with model predictions for several other Galactic dSphs from the literature. Leo II clearly exhibits a lack of more metal poor stars, in analogy to the classical G-dwarf problem, which may indicate a comparable `K-giant problem. Moreover, its evolution appears to have been affected by galactic winds. We use our inferred metallicities as an input parameter for isochrone fits to SDSS photometry and derive approximate ages. The resulting age-metallicity distribution covers the full age range from 2-15 Gyr on our adopted isochrone scale. During the first 7 Gyr relative to the oldest stars [Fe/H] appears to have remained almost constant. The almost constant metallicity at higher ages and a slight drop by about 0.3 dex thereafter may be indicative of rejuvenation by low metallicity gas. Overall, the age-metallicity relation appears to support the formation of Leo II from pre-enriched gas. Evidence for enrichment is seen during the recent 2-4 Gyr. Our findings support earlier photometric findings of Leo II as a galaxy with a prominent old and a dominant intermediate-age population. We do not find a significant radial metallicity gradient nor age gradient in our data.(Abridged)



قيم البحث

اقرأ أيضاً

The Carina dwarf spheroidal (dSph) galaxy is the only galaxy of this type that shows clearly episodic star formation separated by long pauses. Here we present metallicities for 437 radial velocity members of this Galactic satellite. We obtained mediu m-resolution spectroscopy with the multi-object spectrograph FLAMES at the ESO VLT. Our target red giants cover the entire projected surface area of Carina. Our spectra are centered at the near-infrared Ca triplet, which is a well-established metallicity indicator for old and intermediate-age red giants. The resulting data sample provides the largest collection of spectroscopically derived metallicities for a Local Group dSph to date. Four of our likely radial velocity members of Carina lie outside of this galaxys nominal tidal radius, supporting earlier claims of the possible existence of such stars beyond the main body of Carina. We find a mean metallicity of [Fe/H]=-1.7 dex. The formal full width at half maximum of the metallicity distribution is 0.92 dex, while the full range of metallicities spans ~-3.0<[Fe/H]<0.0 dex. The metallicity distribution might be indicative of several subpopulations. There appears to be a mild radial gradient such that more metal-rich populations are more centrally concentrated, matching a similar trend for an increasing fraction of intermediate-age stars. This as well as the photometric colors of the more metal-rich red giants suggest that Carina exhibits an age-metallicity relation. Indeed the age-metallicity degeneracy seems to conspire to form a narrow red giant branch despite the considerable spread in metallicity and wide range of ages. The metallicity distribution is not well-matched by a simple closed-box model of chemical evolution, but requires models that take into account also infall and outflows. (Abridged)
We have obtained high-resolution spectroscopy of ten red giants in the Carina dwarf spheroidal (dSph) with UVES at the ESO/VLT. Here we present the abundances of O,Na,Mg,Si,Ca,Ti and Fe. By comparing the iron abundances [Fe/H] with calcium triplet (C aT) metallicities we show that the empirical CaT technique yields good agreement with the high-resolution data for [Fe/H]>-2 dex, but tends to deviate at lower metallicities. We identify two metal poor stars with iron abundances of -2.72 and -2.50 dex. These stars are found to have enhanced [alpha/Fe] ratios similar to those of stars in the Milky Way halo. However, the bulk of the Carina red giants are depleted in the [alpha/Fe] abundance ratios with respect to the Galactic halo at a given metallicity. One of our targets, with a [Fe/H] of -1.5 dex, is considerably depleted in almost all of the alpha-elements by ~0.5 dex compared to the solar values. Such a low [alpha/Fe] can be produced by stochastical fluctuations in terms of an incomplete mixing of single Type Ia and II SNe events into the ISM. Our derived element ratios are consistent with the episodic and extended SF in Carina known from its color-magnitude diagram. We find a considerable star-to-star scatter in the abundance ratios. This suggests that Carinas SF history varies with position within the galaxy, with incomplete mixing. Alternatively, the SF rate is so low that the high-mass stellar IMF is sparsely populated, as statistically expected in low-mass star clusters, leading to real scatter in the resultant mass-integrated yields. Both ideas are consistent with slow stochastic SF in dissolving associations, so that one may not speak of a single SF history at a detailed level (Abridged).
We present the projected velocity dispersion profile for the remote (d=233kpc) Galactic dwarf spheroidal (dSph) galaxy Leo II, based on 171 discrete stellar radial velocities that were obtained from medium-resolution spectroscopy using the FLAMES/GIR AFFE spectrograph at the European Southern Observatory, Chile. The dispersion profile of those stars with good membership probabilities is essentially flat with an amplitude of 6.6+-0.7 km/s over the full radial extent of our data, which probe to the stellar boundary of this galaxy. We find no evidence of any significant apparent rotation or velocity asymmetry which suggests that tidal effects cannot be invoked to explain Leo IIs properties. From basic mass modeling, employing Jeans equation, we derive a mass out to the limiting radius of (2.7+-0.5) 10^7 Msun and a global mass to light ratio of 27-45 in solar units, depending on the adopted total luminosity. A cored halo profile and a mild amount of tangential velocity anisotropy is found to account well for Leo IIs observed kinematics, although we cannot exclude the possibility of a cusped halo with radially varying velocity anisotropy. All in all, this galaxy exhibits dark matter properties which appear to be concordant with the other dSph satellites of the Milky Way, namely a halo mass profile which is consistent with a central core and a total mass which is similar to the common mass scale seen in other dSphs.
We present low-resolution spectroscopy of 120 red giants in the Galactic satellite dwarf spheroidal (dSph) Leo I, obtained with the GeminiN-GMOS and Keck-DEIMOS spectrographs. We find stars with velocities consistent with membership of Leo I out to 1 .3 King tidal radii. By measuring accurate radial velocities with a median measurement error of 4.6 km/s we find a mean systemic velocity of 284.2 km/s with a global velocity dispersion of 9.9 km/s. The dispersion profile is consistent with being flat out to the last data point. We show that a marginally-significant rise in the radial dispersion profile at a radius of 3 is not associated with any real localized kinematical substructure. Given its large distance from the Galaxy, tides are not likely to have affected the velocity dispersion, a statement we support from a quantitative kinematical analysis, as we observationally reject the occurrence of a significant apparent rotational signal or an asymmetric velocity distribution. Mass determinations adopting both isotropic stellar velocity dispersions and more general models yield a M/L ratio of 24, which is consistent with the presence of a significant dark halo with a mass of about 3x10^7 M_sun, in which the luminous component is embedded. This suggests that Leo I exhibits dark matter properties similar to those of other dSphs in the Local Group. Our data allowed us also to determine metallicities for 58 of the targets. We find a mildly metal poor mean of -1.31 dex and a full spread covering 1 dex. In contrast to the majority of dSphs, Leo I appears to show no radial gradient in its metallicities, which points to a negligible role of external influences in this galaxys evolution.
We carried out a wide-field V, I imaging survey of the Local Group dwarf spheroidal galaxy Leo II using the Subaru Prime Focus Camera on the 8.2-m Subaru Telescope. The survey covered an area of 26.67 x 26.67 arcmin^2, far beyond the tidal radius of Leo II (8.63 arcmin), down to the limiting magnitude of V ~26, which is roughly 1 mag deeper than the turn-off point of the main sequence stars of Leo II. Radial number density profiles of bright and faint red giant branch (RGB) stars were found to change their slopes at around the tidal radius, and extend beyond the tidal radius with shallower slopes. A smoothed surface brightness map of Leo II suggests the existence of a small substructure of globular cluster luminosity beyond the tidal radius. We investigated the properties of the stellar population by means of the color-magnitude diagram. The horizontal branch (HB) morphology index shows a radial gradient in which red HB stars are more concentrated than blue HB stars, which is common to many Local Group dwarf spheroidal galaxies. The color distribution of RGB stars around the mean RGB sequence shows a larger dispersion at the center than in the outskirts, indicating a mixture of stellar populations at the center and a more homogeneous population in the outskirts. Based on the age estimation using subgiant branch (SGB) stars, we found that although the major star formation took place ~8 Gyr ago, a considerable stellar population younger than 8 Gyr is found at the center; such a younger population is insignificant in the outskirts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا