ترغب بنشر مسار تعليمي؟ اضغط هنا

Wide-field Survey around Local Group Dwarf Spheroidal Galaxy Leo II: Spatial Distribution of Stellar Content

148   0   0.0 ( 0 )
 نشر من قبل Yutaka Komiyama
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out a wide-field V, I imaging survey of the Local Group dwarf spheroidal galaxy Leo II using the Subaru Prime Focus Camera on the 8.2-m Subaru Telescope. The survey covered an area of 26.67 x 26.67 arcmin^2, far beyond the tidal radius of Leo II (8.63 arcmin), down to the limiting magnitude of V ~26, which is roughly 1 mag deeper than the turn-off point of the main sequence stars of Leo II. Radial number density profiles of bright and faint red giant branch (RGB) stars were found to change their slopes at around the tidal radius, and extend beyond the tidal radius with shallower slopes. A smoothed surface brightness map of Leo II suggests the existence of a small substructure of globular cluster luminosity beyond the tidal radius. We investigated the properties of the stellar population by means of the color-magnitude diagram. The horizontal branch (HB) morphology index shows a radial gradient in which red HB stars are more concentrated than blue HB stars, which is common to many Local Group dwarf spheroidal galaxies. The color distribution of RGB stars around the mean RGB sequence shows a larger dispersion at the center than in the outskirts, indicating a mixture of stellar populations at the center and a more homogeneous population in the outskirts. Based on the age estimation using subgiant branch (SGB) stars, we found that although the major star formation took place ~8 Gyr ago, a considerable stellar population younger than 8 Gyr is found at the center; such a younger population is insignificant in the outskirts.

قيم البحث

اقرأ أيضاً

We present low-resolution spectroscopy of 120 red giants in the Galactic satellite dwarf spheroidal (dSph) Leo I, obtained with the GeminiN-GMOS and Keck-DEIMOS spectrographs. We find stars with velocities consistent with membership of Leo I out to 1 .3 King tidal radii. By measuring accurate radial velocities with a median measurement error of 4.6 km/s we find a mean systemic velocity of 284.2 km/s with a global velocity dispersion of 9.9 km/s. The dispersion profile is consistent with being flat out to the last data point. We show that a marginally-significant rise in the radial dispersion profile at a radius of 3 is not associated with any real localized kinematical substructure. Given its large distance from the Galaxy, tides are not likely to have affected the velocity dispersion, a statement we support from a quantitative kinematical analysis, as we observationally reject the occurrence of a significant apparent rotational signal or an asymmetric velocity distribution. Mass determinations adopting both isotropic stellar velocity dispersions and more general models yield a M/L ratio of 24, which is consistent with the presence of a significant dark halo with a mass of about 3x10^7 M_sun, in which the luminous component is embedded. This suggests that Leo I exhibits dark matter properties similar to those of other dSphs in the Local Group. Our data allowed us also to determine metallicities for 58 of the targets. We find a mildly metal poor mean of -1.31 dex and a full spread covering 1 dex. In contrast to the majority of dSphs, Leo I appears to show no radial gradient in its metallicities, which points to a negligible role of external influences in this galaxys evolution.
We have surveyed a complete extent of Leo A - an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The $B$, $V$, and $I$ passband CCD images (typical seeing $sim$0.8) were obtained with Subaru Telescope equipped with Su prime-Cam mosaic camera. The wide-field ($20 times 24$) photometry catalog of 38,856 objects ($V sim 16-26$ mag) is presented. This survey is also intended to serve as a finding chart for future imaging and spectroscopic observation programs of Leo A.
The local group dwarf spheroidal galaxies (LG dSphs) are among the most promising astrophysical targets for probing the small scale structure of dark matter (DM) subhalos. We describe a method for testing the correspondence between proposed DM halo m odels and observations of stellar populations within LG dSphs. By leveraging the gravitational potential of any proposed DM model and the available stellar kinematical data, we can derive a prediction for the observed stellar surface density of an LG dSph that can be directly compared with observations. Because we do not make any reference to an assumed surface brightness profile, our model can be applied to exotic DM distributions that produce atypical stellar density distributions. We use our methodology to determine that the DM halo of the Fornax LG dSph is more likely cored than cusped, ascertain that it is characterized by a semi-minor to semi-major axis ratio in minor tension with simulations, and find no substantial evidence of a disk within the dSphs larger DM halo.
We present the projected velocity dispersion profile for the remote (d=233kpc) Galactic dwarf spheroidal (dSph) galaxy Leo II, based on 171 discrete stellar radial velocities that were obtained from medium-resolution spectroscopy using the FLAMES/GIR AFFE spectrograph at the European Southern Observatory, Chile. The dispersion profile of those stars with good membership probabilities is essentially flat with an amplitude of 6.6+-0.7 km/s over the full radial extent of our data, which probe to the stellar boundary of this galaxy. We find no evidence of any significant apparent rotation or velocity asymmetry which suggests that tidal effects cannot be invoked to explain Leo IIs properties. From basic mass modeling, employing Jeans equation, we derive a mass out to the limiting radius of (2.7+-0.5) 10^7 Msun and a global mass to light ratio of 27-45 in solar units, depending on the adopted total luminosity. A cored halo profile and a mild amount of tangential velocity anisotropy is found to account well for Leo IIs observed kinematics, although we cannot exclude the possibility of a cusped halo with radially varying velocity anisotropy. All in all, this galaxy exhibits dark matter properties which appear to be concordant with the other dSph satellites of the Milky Way, namely a halo mass profile which is consistent with a central core and a total mass which is similar to the common mass scale seen in other dSphs.
We explore how well crowded field point-source photometry can be accomplished with SDSS data: We present a photometric pipeline based on DoPhot, and tuned for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations we show that th e completeness of source extraction is above 80% to i < 21 (AB) and a stellar surface density of about 200 sq.amin. Hence, a specialized data pipeline can efficiently be used for e.g. nearby resolved galaxies in SDSS images, where the standard SDSS photometric package Photo, when applied in normal survey mode, gives poor results. We apply our pipeline to an area of about 3.55sq.deg. around the dwarf spheroidal galaxy (dSph) Leo I, and construct a high S/N star-count map of Leo I via an optimized filter in color-magnitude space (g,r,i). Although the radial surface-density profile of the dwarf deviates from the best fit empirical King model towards outer radii, we find no evidence for tidal debris out to a stellar surface-density of 4*10^(-3) of the central value. We determine the total luminosity of Leo I, and model its mass using the spherical and isotropic Jeans equation. Assuming that mass follows light we constrain a lower limit of the total mass of the dSph to be (1.7+/-0.2)*10^7 Msol. Contrary, if the mass in Leo I is dominated by a constant density dark-matter (DM) halo, then the mass within the central 12 is (2+/-0.6)*10^8 Msol. This leads to a mass-to-light ratio of >>6 (Ic_sol), and possibly >75 if the DM halo dominates the mass and extends further out than 12. In summary, our results show that Leo I is a symmetric, relaxed and bound system; this supports the idea that Leo I is a dark-matter dominated system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا