ﻻ يوجد ملخص باللغة العربية
A new numerical code, called SFUMATO, for solving self-gravitational magnetohydrodynamics (MHD) problems using adaptive mesh refinement (AMR) is presented. A block-structured grid is adopted as the grid of the AMR hierarchy. The total variation diminishing (TVD) cell-centered scheme is adopted as the MHD solver, with hyperbolic cleaning of divergence error of the magnetic field also implemented. The self-gravity is solved by a multigrid method composed of (1) full multigrid (FMG)-cycle on the AMR hierarchical grids, (2) V-cycle on these grids, and (3) FMG-cycle on the base grid. The multigrid method exhibits spatial second-order accuracy, fast convergence, and scalability. The numerical fluxes are conserved by using a refluxing procedure in both the MHD solver and the multigrid method. The several tests are performed indicating that the solutions are consistent with previously published results.
Large-scale finite element simulations of complex physical systems governed by partial differential equations crucially depend on adaptive mesh refinement (AMR) to allocate computational budget to regions where higher resolution is required. Existing
A computer code is described for the simulation of gravitational lensing data. The code incorporates adaptive mesh refinement in choosing which rays to shoot based on the requirements of the source size, location and surface brightness distribution o
In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial many-boxes-in-many-boxes mesh hierarchi
We have developed a simulation code with the techniques which enhance both spatial and time resolution of the PM method for which the spatial resolution is restricted by the spacing of structured mesh. The adaptive mesh refinement (AMR) technique sub
Radiative transfer has a strong impact on the collapse and the fragmentation of prestellar dense cores. We present the radiation-hydrodynamics solver we designed for the RAMSES code. The method is designed for astrophysical purposes, and in particula