ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength afterglow observations of the high redshift GRB 050730

139   0   0.0 ( 0 )
 نشر من قبل Sheila McBreen
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GRB 050730 is a long duration high-redshift burst (z=3.967) discovered by Swift. The afterglow shows variability and is well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 050730 including observations from the millimeter to X-rays. We use multi-wavelength afterglow data to understand the temporal and spectral decay properties with superimposed variability of this high redshift burst. Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r, R, i, I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 hours post-burst in the K, J, I, R, V and B bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies. The early afterglow shows variability at early times and shows a steepening at ~0.1 days (8.6 ks) in the B, V, r, R, i, I, J and K passbands. The early afterglow light curve decayed with alpha_1 = -0.60+/-0.07 and alpha_2 = -1.71+/-0.06 based on R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw alpha_x = -2.5+/-0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 hours after the burst. An electron energy index, p, of ~ 2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and indicates that the synchrotron cooling frequency nu_c is above observed frequencies.



قيم البحث

اقرأ أيضاً

We present observations of the afterglow of GRB 080319B at optical, mm and radio frequencies from a few hours to 67 days after the burst. Present observations along with other published multi-wavelength data have been used to study the light-curves a nd spectral energy distributions of the burst afterglow. The nature of this brightest cosmic explosion has been explored based on the observed properties and its comparison with the afterglow models. Our results show that the observed features of the afterglow fits equally good with the Inter Stellar Matter and the Stellar Wind density profiles of the circum-burst medium. In case of both density profiles, location of the maximum synchrotron frequency $ u_m$ is below optical and the value of cooling break frequency $ u_c$ is below $X-$rays, $sim 10^{4}$s after the burst. Also, the derived value of the Lorentz factor at the time of naked eye brightness is $sim 300$ with the corresponding blast wave size of $sim 10^{18}$ cm. The numerical fit to the multi-wavelength afterglow data constraints the values of physical parameters and the emission mechanism of the burst.
104 - V. DElia , F. Fiore , E. Meurs 2006
We analyze high resolution spectroscopic observations of the optical afterglow of GRB050730, obtained with UVES@VLT about hours after the GRB trigger. The spectrum shows that the ISM of the GRB host galaxy at z = 3.967 is complex, with at least five components contributing to the main absorption system. We detect strong CII*, SiII*, OI* and FeII* fine structure absorption lines associated to the second and third component. For the first three components we derive information on the relative distance from the site of the GRB explosion. Component 1, which has the highest redshift, does not present any fine structure nor low ionization lines; it only shows very high ionization features, such as CIV and OVI, suggesting that this component is very close to the GRB site. From the analysis of low and high ionization lines and fine structure lines, we find evidences that the distance of component 2 from the site of the GRB explosion is 10-100 times smaller than that of component 3. We evaluated the mean metallicity of the z=3.967 system obtaining values about 0.01 of the solar metallicity or less. However, this should not be taken as representative of the circumburst medium, since the main contribution to the hydrogen column density comes from the outer regions of the galaxy while that of the other elements presumably comes from the ISM closer to the GRB site. Furthermore, difficulties in evaluating dust depletion correction can modify significantly these values. The mean [C/Fe] ratio agrees well with that expected by single star-formation event models. Interestingly the [C/Fe] of component 2 is smaller than that of component 3, in agreement with GRB dust destruction scenarios, if component 2 is closer than component 3 to the GRB site.
117 - R.L.C. Starling 2005
We present early WHT ISIS optical spectroscopy of the afterglow of gamma-ray burst GRB 050730. The spectrum shows a DLA system with the highest measured hydrogen column to date: N(HI) = 22.1 +/- 0.1 at the third-highest GRB redshift z = 3.968. Our an alysis of the Swift XRT X-ray observations of the early afterglow show X-ray flares accompanied by decreasing X-ray absorption. From both the optical and the X-ray spectra we constrain the dust and gas properties of the host galaxy. We find the host to be a low metallicity galaxy, with low dust content. Much of the X-ray absorbing gas is situated close to the GRB, whilst the HI absorption causing the DLA is most likely located further out.
In 2000, Lamb and Reichart predicted that gamma-ray bursts (GRBs) and their afterglows occur in sufficient numbers and at sufficient brightnesses at very high redshifts (z > 5) to eventually replace quasars as the preferred probe of element formation and reionization in the early universe and to be used to characterize the star-formation history of the early universe, perhaps back to when the first stars formed. Here we report the discovery of the afterglow of GRB 050904 and the identification of GRB 050904 as the first very high redshift GRB. We measure its redshift to be 6.39(+0.11,-0.12), which is consistent with the reported spectroscopic redshift (6.29 +/- 0.01). Furthermore, just redward of Ly-alpha the flux is suppressed by a factor of three on the first night, but returns to expected levels by the fourth night. We propose that this is due to absorption by molecular hydrogen that was excited to rovibrational states by the GRBs prompt emission, but was then overtaken by the jet. Now that very high redshift GRBs have been shown to exist, and at least in this case the afterglow was very bright, observing programs that are designed to capitalize on this science will likely drive a new era of study of the early universe, using GRBs as probes.
105 - Y. Urata , K.Y. Huang , Y.L. Qiu 2006
Observations of the optical afterglow of GRB 041006 with the Kiso Observatory 1.05 m Schmidt telescope, the Lulin Observatory 1.0 m telescope and the Xinglong Observatory 0.6 m telescope. Three-bands (B, V and R) of photometric data points were obtai ned on 2004 October 6, 0.025-0.329 days after the burst. These very early multi band light curves imply the existence of a color dependent plateau phase. The B-band light curve shows a clear plateau at around 0.03 days after the burst. The R band light curve shows the hint of a plateau, or a possible slope change, at around 0.1 days after the burst. The overall behavior of these multi-band light curves may be interpreted in terms of the sum of two separate components, one showing a monotonic decay the other exhibiting a rising and a falling phase, as described by the standard afterglow model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا