ترغب بنشر مسار تعليمي؟ اضغط هنا

Early structure formation in quintessence models and its implications for cosmic reionisation from first stars

124   0   0.0 ( 0 )
 نشر من قبل Umberto Maio Mr
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first hydrodynamic N-body simulations of primordial gas clouds responsible for the reionisation process in dark energy cosmologies. We compare the cosmological constant scenario with a SUGRA quintessence model with marked dynamics in order to highlight effects due to the different acceleration histories imposed by the dark energy. We show that both the number density of gas clouds and their clumpiness keep a record of the expansion rate during evolution, similar to the non-linear dark matter profile at virialisation, as was recently demonstrated by Dolag et al. (2004). Varying the shape of the primordial power spectrum, we show how this effect is mitigated by a running spectral index decreasing the power at small scales. Our results demonstrate that, in order to constrain the dark energy from large scale structures, one must track its effects down to the distribution of luminous matter.


قيم البحث

اقرأ أيضاً

We examine the effects of cosmic strings on structure formation and on the ionization history of the universe. While Gaussian perturbations from inflation are known to provide the dominant contribution to the large scale structure of the universe, de nsity perturbations due to strings are highly non-Gaussian and can produce nonlinear structures at very early times. This could lead to early star formation and reionization of the universe. We improve on earlier studies of these effects by accounting for high loop velocities and for the filamentary shape of the resulting halos. We find that for string energy scales Gmu > 10^{-7} the effect of strings on the CMB temperature and polarization power spectra can be significant and is likely to be detectable by the Planck satellite. We mention shortcomings of the standard cosmological model of galaxy formation which may be remedied with the addition of cosmic strings, and comment on other possible observational implications of early structure formation by strings.
Once the first sources have formed, their mass deposition, energy injection and emitted radiation can deeply affect the subsequent galaxy formation process and influence the evolution of the IGM via a number of so-called feedback effects. The word fe edback is by far one of the most used in modern cosmology, where it is applied to a vast range of situations and astrophysical objects. Generally speaking, the concept of feedback invokes a back reaction of a process on itself or on the causes that have produced it. The character of feedback can be either negative or positive. Here, I will review the present status of investigation of the feedback effects from the first stars and galaxies.
143 - Benedetta Ciardi 2007
In this paper we have calculated the effect of Lyalpha photons emitted by the first stars on the evolution of the IGM temperature. We have considered both a standard Salpeter IMF and a delta-function IMF for very massive stars with mass 300 M_sun. We find that the Lyalpha photons produced by the stellar populations considered here are able to heat the IGM at z<25, although never above ~100 K. Stars with a Salpeter IMF are more effective as, due to the contribution from small-mass long-living stars, they produce a higher Lyalpha background. Lyalpha heating can affect the subsequent formation of small mass objects by producing an entropy floor that may limit the amount of gas able to collapse and reduce the gas clumping.We find that the gas fraction in halos of mass below ~ 5 x 10^6 M_sun is less than 50% (for the smallest masses this fraction drops to 1% or less) compared to a case without Lyalpha heating. Finally, Lyalpha photons heat the IGM temperature above the CMB temperature and render the 21cm line from neutral hydrogen visible in emission at z<15.
We study structure formation in non-minimally coupled dark energy models, where there is a coupling in the Lagrangian between a quintessence scalar field and gravity via the Ricci scalar. We consider models with a range of different non-minimal coupl ing strengths and compare these to minimally coupled quintessence models with time-dependent dark energy densities. The equations of state of the latter are tuned to either reproduce the equation of state of the non-minimally coupled models or their background history. Thereby they provide a reference to study the unique imprints of coupling on structure formation. We show that the coupling between gravity and the scalar field, which effectively results in a time-varying gravitational constant G, is not negligible and its effect can be distinguished from a minimally coupled model. We extend previous work on this subject by showing that major differences appear in the determination of the mass function at high masses, where we observe differences of the order of 40% at z=0. Our new results concern effects on the non-linear matter power spectrum and on the lensing signal (differences of ~10% for both quantities), where we find that non-minimally coupled models could be distinguished from minimally coupled ones.
402 - R. C. Batista , F. Pace 2013
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to $Lambda$CDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on $delta_c$ parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to $Lambda$CDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to $Lambda$CDM model than its homogeneous counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا