ﻻ يوجد ملخص باللغة العربية
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to $Lambda$CDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on $delta_c$ parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to $Lambda$CDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to $Lambda$CDM model than its homogeneous counterparts.
We perform N-body simulations for models with a DE component. Besides of DE with constant negative state parameter w, we consider DE due to scalar fields, self-interacting through RP or SUGRA potentials. According to our post-linear analysis, at z=0,
The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $tau$ into only one type of massive daughters with
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model
LCDM cosmological models with Early Dark Energy (EDE) have been proposed to resolve tensions between the Hubble constant H0 = 100h km/s/Mpc measured locally, giving h ~ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other earl
New measurements of the expansion rate of the Universe have plunged the standard model of cosmology into a severe crisis. In this letter, we propose a simple resolution to the problem that relies on a first order phase transition in a dark sector in