ترغب بنشر مسار تعليمي؟ اضغط هنا

The U-shaped distribution of globular cluster specific frequencies in a biased globular cluster formation scenario

55   0   0.0 ( 0 )
 نشر من قبل Kenji Bekki dr
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using high-resolution numerical simulations, we investigate mass- and luminosity-normalized specific frequencies (T_N and S_N, respectively) of globular cluster systems (GCSs) in order to understand the origin of the observed U-shaped relation between S_N and V-band magnitude (M_V) of their host galaxies. We adopt a biased GC formation scenario in which GC formation is truncated in galaxy halos that are virialized at a later redshift, z_trun. T_N is derived for galaxies with GCs today and converted into S_N for reasonable galaxy mass-to-light-ratios (M/L). We find that T_N depends on halo mass (M_h) in the sense that T_N can be larger in more massive halos with M_h > 10^9 M_sun, if z_trun is as high as 15. We however find that the dependence is too weak to explain the observed S_N-M_V relation and the wide range of S_N in low-mass early-type galaxies with -20.5 < M_V < -16.0 mag for a reasonable constant M/L. The M_V-dependence of S_N for the low-mass galaxies can be well reproduced, if the mass-to-light-ratio M_h/L_V propto M_h^{alpha}, where alpha is as steep as -1. Based on these results, we propose that the origin of the observed U-shaped S_N-M_V relation of GCSs can be understood in terms of the bimodality in the dependence of M_h/L_V on M_h of their host galaxies. We also suggest that the observed large dispersionin S_N in low-mass galaxies is due partly to the large dispersion in T_N.



قيم البحث

اقرأ أيضاً

The globular cluster (GC) specific frequency ($S_N$), defined as the number of GCs per unit galactic luminosity, represents the efficiency of GC formation (and survival) compared to field stars. Despite the naive expectation that star cluster formati on should scale directly with star formation, this efficiency varies widely across galaxies. To explore this variation we measure the z-band GC specific frequency ($S_{N,z}$) for 43 early-type galaxies (ETGs) from the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) Fornax Cluster Survey. Combined with the homogenous measurements of $S_{N,z}$ in 100 ETGs from the HST/ACS Virgo Cluster Survey from Peng et al. (2008), we investigate the dependence of $S_{N,z}$ on mass and environment over a range of galaxy properties. We find that $S_{N,z}$ behaves similarly in the two galaxy clusters, despite the clusters order-of-magnitude difference in mass density. The $S_{N,z}$ is low in intermediate-mass ETGs ($-20<M_z<-23$), and increases with galaxy luminosity. It is elevated at low masses, on average, but with a large scatter driven by galaxies in dense environments. The densest environments with the strongest tidal forces appear to strip the GC systems of low-mass galaxies. However, in low-mass galaxies that are not in strong tidal fields, denser environments correlate with enhanced GC formation efficiencies. Normalizing by inferred halo masses, the GC mass fraction, $eta=(3.36pm0.2)times10^{-5}$, is constant for ETGs with stellar masses $mathcal{M}_star lesssim 3times10^{10}M_odot$, in agreement with previous studies. The lack of correlation between the fraction of GCs and the nuclear light implies only a weak link between the infall of GCs and the formation of nuclei.
106 - Paulina Assmann 2011
Recent observations of the dwarf elliptical galaxy Scl-dE1 (Sc22) in the Sculptor group of galaxies revealed an extended globular cluster (Scl-dE1 GC1), which exhibits an extremely large core radius of about 21.2 pc. The authors of the discovery pape r speculated on whether this object could reside in its own dark matter halo and/or if it might have formed through the merging of two or more star clusters. In this paper, we present N-body simulations to explore thoroughly this particular formation scenario. We follow the merger of two star clusters within dark matter haloes of a range of masses (as well as in the absence of a dark matter halo). In order to obtain a remnant which resembles the observed extended star cluster, we find that the star formation efficiency has to be quite high (around 33 per cent) and the dark matter halo, if present at all, has to be of very low mass, i.e. raising the mass to light ratio of the object within the body of the stellar distribution by at most a factor of a few. We also find that expansion of a single star cluster following mass loss provides another viable formation path. Finally, we show that future measurements of the velocity dispersion of this system may be able to distinguish between the various scenarios we have explored.
Mergers of gas-rich galaxies lead to gravitationally driven increases in gas pressure that can trigger intense bursts of star and cluster formation. Although star formation itself is clustered, most newborn stellar aggregates are unbound associations and disperse. Gravitationally bound star clusters that survive for at least 10-20 internal crossing times (~20-40 Myr) are relatively rare and seem to contain <10% of all stars formed in the starbursts. The most massive young globular clusters formed in present-day mergers exceed omega Cen by an order of magnitude in mass, yet appear to have normal stellar initial mass functions. In the local universe, recent remnants of major gas-rich disk mergers appear as protoelliptical galaxies with subpopulations of typically 100-1000 young metal-rich globular clusters in their halos. The evidence is now strong that these second-generation globular clusters formed from giant molecular clouds in the merging disks, squeezed into collapse by large-scale shocks and high gas pressure rather than by high-velocity cloud-cloud collisions. Similarly, first- generation metal-poor globular clusters may have formed during cosmological reionization from low-metallicity giant molecular clouds squeezed by the universal reionization pressure.
76 - B. W. Miller 1998
The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE) galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the Hubble Space Telescope are presented. Combining all available data, we find that for nucleated dE s --- which are spatially distributed like giant ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with M_V, while for non-nucleated dEs --- which are distributed like late-type galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V. The S_N values for dE galaxies are thus on average significantly higher than those for late-type galaxies, which have S_N < 1. This suggests that dE galaxies are more akin to giant Es than to late-type galaxies. If there are dormant or stripped irregulars hiding among the dE population, they are likely to be among the non-nucleated dEs. Furthermore, the similarities in the properties of the globular clusters and in the spatial distributions of dE,Ns and giant Es suggest that neither galaxy mass or galaxy metallicity is responsible for high values of S_N. Instead, most metal-poor GCs may have formed in dwarf-sized fragments that merged into larger galaxies.
196 - Xufen Wu , Pavel Kroupa 2013
Previous studies of globular cluster (GC) systems show that there appears to be a universal specific GC formation efficiency $eta$ which relates the total mass of GCs to the virial mass of host dark matter halos, $M_{vir}$ (Georgiev et al 2010, Spitl er & Forbes2009). In this paper, the specific frequency, $S_N$, and specific GC formation efficiency, $eta$, are derived as functions of $M_{vir}$ in Milgromian dynamics, i.e., in modified Newtonian dynamics (MOND). In Milgromian dynamics, for the galaxies with GCs, the mass of the GC system, $M_{GC}$, is a two-component function of $M_{vir}$ instead of a simple linear relation. An observer in a Milgromian universe, who interprets this universe as being Newtonian/Einsteinian, will incorrectly infer a universal constant fraction between the mass of the GC system and a (false) dark matter halo of the baryonic galaxy. In contrast to a universal constant of $eta$, in a Milgromian universe, for galaxies with $M_{vir} <= 10^{12}msun$, $eta$ decreases with the increase of $M_{vir}$, while for massive galaxies with $M_{vir}>10^{12}msun$, $eta$ increases with the increase of $M_{vir}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا