ترغب بنشر مسار تعليمي؟ اضغط هنا

The ACS Fornax Cluster Survey. III. Globular Cluster Specific Frequencies of Early-Type Galaxies

129   0   0.0 ( 0 )
 نشر من قبل Yiqing Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The globular cluster (GC) specific frequency ($S_N$), defined as the number of GCs per unit galactic luminosity, represents the efficiency of GC formation (and survival) compared to field stars. Despite the naive expectation that star cluster formation should scale directly with star formation, this efficiency varies widely across galaxies. To explore this variation we measure the z-band GC specific frequency ($S_{N,z}$) for 43 early-type galaxies (ETGs) from the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) Fornax Cluster Survey. Combined with the homogenous measurements of $S_{N,z}$ in 100 ETGs from the HST/ACS Virgo Cluster Survey from Peng et al. (2008), we investigate the dependence of $S_{N,z}$ on mass and environment over a range of galaxy properties. We find that $S_{N,z}$ behaves similarly in the two galaxy clusters, despite the clusters order-of-magnitude difference in mass density. The $S_{N,z}$ is low in intermediate-mass ETGs ($-20<M_z<-23$), and increases with galaxy luminosity. It is elevated at low masses, on average, but with a large scatter driven by galaxies in dense environments. The densest environments with the strongest tidal forces appear to strip the GC systems of low-mass galaxies. However, in low-mass galaxies that are not in strong tidal fields, denser environments correlate with enhanced GC formation efficiencies. Normalizing by inferred halo masses, the GC mass fraction, $eta=(3.36pm0.2)times10^{-5}$, is constant for ETGs with stellar masses $mathcal{M}_star lesssim 3times10^{10}M_odot$, in agreement with previous studies. The lack of correlation between the fraction of GCs and the nuclear light implies only a weak link between the infall of GCs and the formation of nuclei.



قيم البحث

اقرأ أيضاً

118 - Monica L. Turner 2012
The Advanced Camera for Surveys (ACS) Fornax Cluster Survey is a Hubble Space Telescope program to image 43 early-type galaxies in the Fornax cluster, using the F475W and F850LP bandpasses of the ACS. We employ both 1D and 2D techniques to characteri ze the properties of the stellar nuclei in these galaxies, defined as the central luminosity excesses relative to a Sersic model fitted to the underlying host. We find 72+/-13% of our sample (31 galaxies) to be nucleated, with only three of the nuclei offset by more than 0.5 from their galaxy photocenter, and with the majority of nuclei having colors bluer than their hosts. The nuclei are observed to be larger, and brighter, than typical Fornax globular clusters, and to follow different structural scaling relations. A comparison of our results to those from the ACS Virgo Cluster Survey reveals striking similarities in the properties of the nuclei belonging to these different environments. We briefly review a variety of proposed formation models and conclude that, for the low-mass galaxies in our sample, the most important mechanism for nucleus growth is probably infall of star clusters through dynamical friction, while for higher mass galaxies, gas accretion triggered by mergers, accretions and tidal torques is likely to dominate, with the relative importance of these two processes varying smoothly as a function of galaxy mass. Some intermediate-mass galaxies in our sample show a complexity in their inner structure that may be the signature of hybrid nuclei that arose through parallel formation channels.
Diffuse star clusters (DSCs) are old and dynamically hot stellar systems that have lower surface brightness and more extended morphology than globular clusters (GCs). Using the images from HST/ACS Fornax Cluster Survey, we find that 12 out of 43 earl y-type galaxies (ETGs) in the Fornax cluster host significant numbers of DSCs. Together with literature data from the HST/ACS Virgo Cluster Survey, where 18 out of 100 ETGs were found to host DSCs, we systematically study the relationship of DSCs with GCs, and their host galaxy environment. Two DSC hosts are post-merger galaxies, with most of the other hosts either having low mass or showing clear disk components. We find that while the number ratio of DSCs to GCs is nearly constant in massive galaxies, the DSC-to-GC ratio becomes systematically higher in lower mass hosts. This suggests that DSCs may be more efficient at forming (or surviving) in low density environments. DSC hosts are not special either in their position in the cluster, or in the galactic color-magnitude diagram. Why some disk and low-mass galaxies host DSCs while others do not is still a puzzle, however. The mean ages of DSC hosts and non-hosts are similar at similar masses, implying that formation efficiency, rather than survival, is the reason behind different DSC number fractions in early-type galaxies.
We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation (epsilon > 0.2) and inte rmediate to high luminosities (M_z<-19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of being more strongly associated with disks rather than bulges. Surprisingly, we find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and where the present day major axis is an indicator of the preferred merging axis.
We present the color distributions of globular cluster (GC) systems for 100 Virgo cluster early-type galaxies observed in the ACS Virgo Cluster Survey. The color distributions of individual GC systems are consistent with continuous trends across gala xy luminosity, color, and stellar mass. On average, almost all galaxies possess a component of metal-poor GCs, with the average fraction of metal-rich GCs ranging from 15 to 60%. The colors of both subpopulations correlate with host galaxy luminosity and color, with the red GCs having a steeper slope. To convert color to metallicity, we also introduce a preliminary (g-z)-[Fe/H] relation calibrated to Galactic, M49 and M87 GCs. This relation is nonlinear with a steeper slope for [Fe/H] < -0.8. As a result, the metallicities of the metal-poor and metal-rich GCs vary similarly with respect to galaxy luminosity and stellar mass, with relations of [Fe/H]_MP ~ L^0.16 ~ M_star^0.17 and [Fe/H]_MR ~ L^0.26 ~ M_star^0.22, respectively. Although these relations are shallower than the mass-metallicity relation predicted by wind models and observed for dwarf galaxies, they are very similar to the mass-metallicity relation for star forming galaxies in the same mass range. The offset between the two GC populations varies slowly (~ M_star^0.05) and is approximately 1 dex across three orders of magnitude in mass, suggesting a nearly universal amount of enrichment between the formation of the two populations of GCs. We also find that although the metal-rich GCs show a larger dispersion in color, it is the *metal-poor GCs* that have an equal or larger dispersion in metallicity. Like the color-magnitude relation, these relations derived from globular clusters present stringent constraints on the formation and evolution of early-type galaxies. (Abridged)
222 - S. Mieske , A. Jordan , P. Cote 2010
We investigate the color-magnitude relation for globular clusters (GCs) -- the so-called blue tilt -- detected in the ACS Fornax Cluster Survey and using the combined sample of GCs from the ACS Fornax and Virgo Cluster Surveys. We find a tilt of gamm a_z=d(g-z)/dz=-0.0257 +- 0.0050 for the full GC sample of the Fornax Cluster Survey (~5800 GCs). This is slightly shallower than the value gamma_z=-0.0459 +- 0.0048 found for the Virgo Cluster Survey GC sample (~11100 GCs). The slope for the merged Fornax and Virgo datasets (~16900 GCs) is gamma_z=-0.0293 +- 0.0085, corresponding to a mass-metallicity relation of Z ~ M^0.43. We find that the blue tilt sets in at GC masses in excess of M ~ 2*10^5 M_sun. The tilt is stronger for GCs belonging to high-mass galaxies (M_* > 5 * 10^10 M_sun) than for those in low-mass galaxies (M_* < 5 * 10^10 M_sun). It is also more pronounced for GCs with smaller galactocentric distances. Our findings suggest a range of mass-metallicity relations Z_GC ~ M_GC^(0.3-0.7) which vary as a function of host galaxy mass/luminosity. We compare our observations to a recent model of star cluster self-enrichment with generally favorable results. We suggest that, within the context of this model, the proto-cluster clouds out of which the GCs formed may have had density profiles slightly steeper than isothermal and/or star formation efficiencies somewhat below 0.3. We caution, however, that the significantly different appearance of the CMDs defined by the GC systems associated with galaxies of similar mass and morphological type pose a challenge to any single mechanism that seeks to explain the blue tilt. We therefore suggest that the merger/accretion histories of individual galaxies have played a non-negligible role determining the distribution of GCs in the CMDs of individual GC systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا