ﻻ يوجد ملخص باللغة العربية
We show that the delay of structure formation can not fully account for the reduction of electron optical depth from WMAP1 to WMAP3 when the radiative transfer effects and feedback mechanisms are took into account in computing the reionization history of the Universe. We also show that a PopIII stellar cluster with a mass of 80Mo and a heavy Larson initial mass function has an ionizing efficiency high enough to account for WMAP3 results, while in the case of WMAP1, a higher stellar mass of 1000Mo was required.
We study the reionization histories where ionizing UV photons are emitted from decaying particles, in addition to usual contributions from stars and quasars, taking account of the fact that the universe is not fully ionized until z = 6 as observed by
Using a Gibbs sampling algorithm for joint CMB estimation and component separation, we compute the large-scale CMB and foreground posteriors of the 3-yr WMAP temperature data. Our parametric data model includes the cosmological CMB signal and instrum
We have independently measured the genus topology of the temperature fluctuations in the cosmic microwave background seen in the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data. A genus analysis of the WMAP data indicates consistency with Gau
We confront predictions of inflationary scenarios with the WMAP data, in combination with complementary small-scale CMB measurements and large-scale structure data. The WMAP detection of a large-angle anti-correlation in the temperature--polarization
A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits