ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-Ray Burst Synthetic Spectra from Collisionless Shock PIC Simulations

56   0   0.0 ( 0 )
 نشر من قبل Christian B. Hededal
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radiation from afterglows of gamma-ray bursts is generated in the collisionless plasma shock interface between a relativistic outflow and a quiescent circum-burst medium. The two main ingredients responsible for the radiation are high-energy, non-thermal electrons and a strong magnetic field. In this Letter we present, for the first time, synthetic spectra extracted directly from first principles particle-in-cell simulations of relativist collisionless plasma shocks. The spectra are generated by a numerical Fourier transformation of the electrical far-field from each of a large number of particles, sampled directly from the particle-in-cell simulations. Both the electromagnetic field and the non-thermal particle acceleration are self-consistent products of the Weibel two-stream instability. We find that the radiation spectrum from a $Gamma=15$ shock simulation show great resemblance with observed GRB spectra -- we compare specifically with that of GRB000301C.

قيم البحث

اقرأ أيضاً

41 - Christian Hededal 2005
The radiation from afterglows of gamma-ray bursts (GRB) is generated in collisionless plasma shocks. The two main ingredients behind the radiation are high-energy, non-thermal electrons and a strong magnetic field. I argue that in order to make the r ight conclusions about gamma-ray burst and afterglow parameters from observations, it is crucial to have a firm understanding of the microphysics of collisionless shock. I present the results of self-consistent, three-dimensional particle-in-cell computational simulations of the collision of weakly magnetized plasma shells: The experiments show how a plasma instability generates a magnetic field in the shock. The field has strength up to percents of the equipartition value. The experiments also reveal a new, non-thermal electron acceleration mechanism that differs substantially from Fermi acceleration. Finally, I present the results from a new numerical tool that enables us to extract synthetic radiation spectra directly from the experiments. The preliminary results differ from synchrotron radiation but are consistent with GRB afterglow observations. I conclude that strong magnetic field generation, non-thermal particle acceleration and the emission of radiation that is consistent with GRB afterglow observations, are all unavoidable consequences of the collision between two relativistic plasma shells.
Radiation transport codes are often used in astrophysics to construct spectral models. In this work we demonstrate how producing these models for a time series of data can provide unique information about supernovae (SNe). Unlike previous work, we sp ecifically concentrate on the method for obtaining the best synthetic spectral fits, and the errors associated with the preferred model parameters. We demonstrate how varying the ejecta mass, bolometric luminosity ($L_{bol}$) and photospheric velocity ($v_{ph}$), affects the outcome of the synthetic spectra. As an example we analyze the photospheric phase spectra of the GRB-SN,2016jca. It is found that for most epochs (where the afterglow subtraction is small) the error on $L_{bol}$ and $v_{ph}$ was $sim$5%. The uncertainty on ejecta mass and K.E. was found to be $sim$20%, although this can be expected to dramatically decrease if models of nebular phase data can be simultaneously produced. We also demonstrate how varying the elemental abundance in the ejecta can produce better synthetic spectral fits. In the case of SN,2016jca it is found that a decreasing $^{56}$Ni abundance as a function of decreasing velocity produces the best fit models. This could be the case if the $^{56}$Ni was sythesised at the side of the GRB jet, or dredged up from the centre of the explosion. The work presented here can be used as a guideline for future studies on supernovae which use the same or similar radiation transfer code.
The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper we propose a new measure to describe spectra: the width of the $EF_E$ spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/GBM and CGRO/BATSE. The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability $<10^{-6}$). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes -- synchrotron and blackbody radiation -- the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78% of long GRBs and 85% of short GRBs are incompatible with the minimum width of standard slow cooling synchrotron emission from a Maxwellian distribution of electrons, with fast cooling spectra predicting even wider spectra. Photospheric emission can explain the spectra if mechanisms are invoked to give a spectrum much broader than a blackbody.
We propose to study cosmic reionization using absorption line spectra of high-redshift Gamma Ray Burst (GRB) afterglows. We show that the statistics of the dark portions (gaps) in GRB absorption spectra represent exquisite tools to discriminate among different reionization models. We then compute the probability to find the largest gap in a given width range [Wmax, Wmax + dW] at a flux threshold Fth for burst afterglows at redshifts 6.3 < z < 6.7. We show that different reionization scenarios populate the (Wmax, Fth) plane in a very different way, allowing to distinguish among different reionization histories. We provide here useful plots that allow a very simple and direct comparison between observations and model results. Finally, we apply our methods to GRB 050904 detected at z = 6.29. We show that the observation of this burst strongly favors reionization models which predict a highly ionized intergalactic medium at z~6, with an estimated mean neutral hydrogen fraction xHI = 6.4 pm 0.3 times 10^-5 along the line of sight towards GRB 050904.
89 - B. Gendre 2006
We analyze optical and X-ray observations of GRB 050904 obtained with TAROT and SWIFT. We perform temporal and spectral analysis of the X-ray and optical data. We find significant absorption in the early phase of the X-ray light curve, with some evid ence (3 sigma level) of variability. We interpret this as a progressive photo-ionization. We investigate the environment of the burst and constrain its density profile. We find that the overall behavior of the afterglow is compatible with a fireball expanding in a wind environment during the first 2000 seconds after the burst (observer frame). On the other hand, the late (after 0.5 days, observer frame) afterglow is consistent with an interstellar medium, suggesting the possible presence of a termination shock. We estimate the termination shock position to be R_t ~ 1.8 x 10^{-2} pc, and the wind density parameter to be A_* ~ 1.8. We try to explain the simultaneous flares observed in optical and X-ray bands in light of different models : delayed external shock from a thick shell, inverse Compton emission from reverse shock, inverse Compton emission from late internal shocks or a very long internal shock activity. Among these models, those based on a single emission mechanism, are unable to account for the broad-band observations. Models invoking late internal shocks, with the inclusion of IC emission, or a properly tuned very long internal shock activity, offer possible explanations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا