ﻻ يوجد ملخص باللغة العربية
The ability to test the nature of dark mass-energy components in the universe through large-scale structure studies hinges on accurate predictions of sky survey expectations within a given world model. Numerical simulations predict key survey signatures with varying degrees of confidence, limited mainly by the complex astrophysics of galaxy formation. As surveys grow in size and scale, systematic uncertainties in theoretical modeling can become dominant. Dark energy studies will challenge the computational cosmology community to critically assess current techniques, develop new approaches to maximize accuracy, and establish new tools and practices to efficiently employ globally networked computing resources.
This paper investigates the reproducibility of computational science research and identifies key challenges facing the community today. It is the result of the First Summer School on Experimental Methodology in Computational Science Research (https:/
The Dark Energy Survey (DES) will use a new imaging camera on the Blanco 4-m telescope at CTIO to image 5000 square degrees of sky in the South Galactic Cap in four optical bands, and to carry out repeat imaging over a smaller area to identify and me
The Nobel Prize winning confirmation in 1998 of the accelerated expansion of our Universe put into sharp focus the need of a consistent theoretical model to explain the origin of this acceleration. As a result over the past two decades there has been
Kination dominated quintessence models of dark energy have the intriguing feature that the relic abundance of thermal cold dark matter can be significantly enhanced compared to the predictions from standard cosmology. Previous treatments of such mode
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996) without requiring the presence of dark energy or a cosmological constant. In a recen