ترغب بنشر مسار تعليمي؟ اضغط هنا

Stagnant Shells in the Vicinity of the Dusty Wolf-Rayet-OB Binary WR 112

297   0   0.0 ( 0 )
 نشر من قبل Ryan Lau
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high spatial resolution mid-infrared images of the nebula around the late-type carbon-rich Wolf-Rayet (WC)-OB binary system WR~112 taken by the recently upgraded VLT spectrometer and imager for the mid-infrared (VISIR) with the PAH1, NeII_2, and Q3 filters. The observations reveal a morphology resembling a series of arc-like filaments and broken shells. Dust temperatures and masses are derived for each of the identified filamentary structures, which exhibit temperatures ranging from $179_{-6}^{+8}$ K at the exterior W2 filament to $355_{-25}^{+37}$ K in the central 3. The total dust mass summed over the features is $2.6pm0.4times10^{-5}$ $mathrm{M}_odot$. A multi-epoch analysis of mid-IR photometry of WR~112 over the past $sim20$ yr reveals no significant variability in the observed dust temperature and mass. The morphology of the mid-IR dust emission from WR~112 also exhibits no significant expansion from imaging data taken in 2001, 2007, and 2016, which disputes the current interpretation of the nebula as a high expansion velocity ($sim1200$ km s$^{-1}$) pinwheel-shaped outflow driven by the central WC-OB colliding-wind binary. An upper limit of $lesssim120$ km s$^{-1}$ is derived for the expansion velocity assuming a distance of $4.15$ kpc. The upper limit on the average total mass-loss rate from the central 3 of WR~112 is estimated to be $lesssim8times10^{-6}$ $mathrm{M}_odot$ yr$^{-1}$. We leave its true nature as an open question, but propose that the WR~112 nebula may have formed in the outflow during a previous red or yellow supergiant phase of the central Wolf-Rayet star.

قيم البحث

اقرأ أيضاً

WR 112 is a dust-forming carbon-rich Wolf-Rayet (WC) binary with a dusty circumstellar nebula that exhibits a complex asymmetric morphology, which traces the orbital motion and dust formation in the colliding winds of the central binary. Unraveling t he complicated circumstellar dust emission around WR 112 therefore provides an opportunity to understand the dust formation process in colliding-wind WC binaries. In this work, we present a multi-epoch analysis of the circumstellar dust around WR 112 using seven high spatial resolution (FWHM $sim0.3-0.4$) N-band ($lambda sim12$ $mu$m) imaging observations spanning almost 20 years and includes newly obtained images from Subaru/COMICS in Oct 2019. In contrast to previous interpretations of a face-on spiral morphology, we observe clear evidence of proper motion of the circumstellar dust around WR 112 consistent with a nearly edge-on spiral with a $theta_s=55^circ$ half-opening angle and a $sim20$-yr period. The revised near edge-on geometry of WR 112 reconciles previous observations of highly variable non-thermal radio emission that was inconsistent with a face-on geometry. We estimate a revised distance to WR 112 of $d = 3.39^{+0.89}_{-0.84}$ kpc based on the observed dust expansion rate and a spectroscopically derived WC terminal wind velocity of $v_infty= 1230pm260$ km s$^{-1}$. With the newly derived WR 112 parameters we fit optically-thin dust spectral energy distribution models and determine a dust production rate of $dot{M}_d=2.7^{+1.0}_{-1.3}times10^{-6}$ M$_odot$ yr$^{-1}$, which demonstrates that WR 112 is one of the most prolific dust-making WC systems known.
Near infrared spectroscopy and photometry of the Wolf-Rayet Star WR 143 (HD 195177) were obtained in the $JHK$ photometric bands. High resolution spectra observed in the J and H bands exhibit narrow 1.083-micron He I line and the H I Pa Beta and the Brackett series lines in emission superposed on the broad emission line spectrum of the Wolf-Rayet star, giving strong indications of the presence of a companion. From the narrow emission lines observed, the companion is identified to be an early-type Be star. The photometric magnitudes exhibit variations in the JHK bands which are probably due to the variability of the companion star. The flux density distribution is too steep for a Wolf-Rayet atmosphere. This is identified to be mainly due to the increasing contribution from the early-type companion star towards shorter wavelengths.
73 - A. Collado 2015
Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of th eir components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {lambda}4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system
Infrared imaging of the colliding-wind binary Apep has revealed a spectacular dust plume with complicated internal dynamics that challenges standard colliding-wind binary physics. Such challenges can be potentially resolved if a rapidly-rotating Wolf -Rayet star is located at the heart of the system, implicating Apep as a Galactic progenitor system to long-duration gamma-ray bursts. One of the difficulties in interpreting the dynamics of Apep is that the spectral composition of the stars in the system was unclear. Here we present visual to near-infrared spectra that demonstrate that the central component of Apep is composed of two classical Wolf-Rayet stars of carbon- (WC8) and nitrogen-sequence (WN4-6b) subtypes. We argue that such an assignment represents the strongest case of a classical WR+WR binary system in the Milky Way. The terminal line-of-sight wind velocities of the WC8 and WN4-6b stars are measured to be $2100 pm 200$ and $3500 pm 100$ km s$^{-1}$, respectively. If the mass-loss rate of the two stars are typical for their spectral class, the momentum ratio of the colliding winds is expected to be $approx$ 0.4. Since the expansion velocity of the dust plume is significantly smaller than either of the measured terminal velocities, we explore the suggestion that one of the Wolf-Rayet winds is anisotropic. We can recover a shock-compressed wind velocity consistent with the observed dust expansion velocity if the WC8 star produces a significantly slow equatorial wind with a velocity of $approx$530 km s$^{-1}$. Such slow wind speeds can be driven by near-critical rotation of a Wolf-Rayet star.
84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int o an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا