ﻻ يوجد ملخص باللغة العربية
We investigate the impact of galactic mass loss triggered by ram-pressure stripping of cluster galaxies on the evolution of the intra-cluster medium (ICM). We use combined N-body and hydrodynamic simulations together with a phenomenological galaxy formation model and a prescription of the effect of ram-pressure stripping on the galaxies. We analyze the effect of galaxy -- ICM interaction for different model clusters with different masses and different merger histories. Our simulations show that ram-pressure stripping can account for ~ 10% of the overall observed level of enrichment in the ICM within a radius of 1.3 Mpc. The efficiency of metal ejection of cluster galaxies depends at the first few Gyr of the simulation mainly on the cluster mass and is significantly increased during major merger events. Additionally we show that ram-pressure stripping is most efficient in the center of the galaxy cluster and the level of enrichment drops quite fast at larger radii. We present emission weighted metallicity maps of the ICM which can be compared with X-ray observations. The resulting distribution of metals in the ICM shows a complex pattern with stripes and plumes of metal rich material. The metallicity maps can be used to trace the present and past interactions between the ICM and cluster galaxies.
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spira
Ram-pressure stripping by the gaseous intra-cluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to rel
We use 3-dimensional SPH/N-BODY simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott (1972) relating the gravitational restoring force provided by the disk
By creating and analyzing the two dimensional gas temperature and abundance maps of the RGH 80 compact galaxy group with the high-quality Chandra data, we detect a high-abundance ($simeq 0.7$ $Z_odot$) arc, where the metal abundance is significantly
We present numerical simulations of the dynamical and chemical evolution of galaxy clusters. X-ray spectra show that the intra-cluster medium contains a significant amount of metals. As heavy elements are produced in the stars of galaxies material fr