ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Limb Darkening, Spectral Energy Distribution, and Temperature Structure of Procyon

82   0   0.0 ( 0 )
 نشر من قبل Jason P. Aufdenberg
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have fit synthetic visibilities from 3-D (CO5BOLD + PHOENIX) and 1-D (PHOENIX, ATLAS 12) model stellar atmospheres of Procyon (F5 IV) to high-precision interferometric data from the VLTI Interferometer (K-band) and from the Mark III interferometer (500 nm and 800 nm). These data sets provide a test of theoretical wavelength dependent limb-darkening predictions. The work of Allende Prieto et al. has shown that the temperature structure from a spatially and temporally averaged 3-D hydrodynamical model produces significantly less limb darkening at 500 nm relative to the temperature structure of a 1-D MARCS model atmosphere with a standard mixing-length approximation for convection. Our direct fits to the interferometric data confirm this prediction. A 1-D ATLAS 12 model with ``approximate overshooting provides the required temperature gradient. We show, however, that 1-D models cannot reproduce the ultraviolet spectrophotometry below 160 nm with effective temperatures in the range constrained by the measured bolometric flux and angular diameter. We find that a good match to the full spectral energy distribution can be obtained with a composite model consisting of a weighted average of twelve 1-D model atmospheres based on the surface intensity distribution of a 3-D granulation simulation. We emphasize that 1-D models with overshooting may realistically represent the mean temperature structure of F-type stars like Procyon, but the same models will predict redder colors than observed because they lack the multicomponent temperature distribution expected for the surfaces of these stars.


قيم البحث

اقرأ أيضاً

Characterization of the atmospheres of transiting exoplanets relies on accurate measurements of the extent of the optically thick area of the planet at multiple wavelengths with a precision $lesssim$100 parts per million (ppm). Next-generation instru ments onboard the James Webb Space Telescope (JWST) are expected to achieve $sim$10 ppm precision for several tens of targets. A similar precision can be obtained in modelling only if other astrophysical effects, including the stellar limb-darkening, are accounted for properly. In this paper, we explore the limits on precision due to the mathematical formulas currently adopted to approximate the stellar limb-darkening, and to the use of limb-darkening coefficients obtained either from stellar-atmosphere models or empirically. We propose a new limb-darkening law with two coefficients, `power-2, which outperforms other two-coefficient laws adopted in the literature in most cases, and particularly for cool stars. Empirical limb-darkening based on two-coefficient formulas can be significantly biased, even if the light-curve residuals are nearly photon-noise limited. We demonstrate an optimal strategy to fitting for the four-coefficients limb-darkening in the visible, using prior information on the exoplanet orbital parameters to break some of the degeneracies that otherwise would prevent the convergence of the fit. Infrared observations taken with the James Webb Space Telescope (JWST) will provide accurate measurements of the exoplanet orbital parameters with unprecedented precision, which can be used as priors to improve the stellar limb-darkening characterization, and therefore the inferred exoplanet parameters, from observations in the visible, such as those taken with Kepler/K2, JWST, other past and future instruments.
We provide here tables of stellar limb-darkening coefficients (LDCs) for the Ariel ESA M4 space mission. These tables include LDCs corresponding to different wavelength bins and white bands for the NIRSpec, AIRS-Ch0 and AIRS-Ch1 spectrographs, and th ose corresponding to the VISPhot, FGS1 and FGS2 photometers. The LDCs are calculated with the open-source software ExoTETHyS for three complete grids of stellar atmosphere models obtained with the ATLAS9 and PHOENIX codes. The three model grids are complementary, as the PHOENIX code adopts more modern input physics and spherical geometry, while the models calculated with ATLAS9 cover wider ranges of stellar parameters. The LDCs obtained from corresponding models in the ATLAS9 and PHOENIX grids are compared in the main text. All together the models cover the following ranges in effective temperature ($1,500 , K le T_{mbox{eff}} le 50,000 , K$), surface gravity (0.0 dex $le log{g} le 6.0$ dex), and metallicity ($-5.0 le [M/H] le 1.0$).
We obtain high-precision limb-darkening measurements in five bands (V, V_E, I_E, I, and H) for the K3 III (Teff=4200 K, [Fe/H]=+0.3, log(g)=2.3) source of the Galactic bulge microlensing event EROS BLG-2000-5. These measurements are inconsistent with the predictions of atmospheric models at >10 sigma. While the disagreement is present in all bands, it is most apparent in I, I_E and V_E, in part because the data are better and in part because the intrinsic disagreement is stronger. We find that when limb-darkening profiles are normalized to have unit total flux, the I-band models for a broad range of temperatures all cross each other at a common point. The solar profile also passes through this point. However, the profile as measured by microlensing does not. We conjecture that the models have incorporated some aspect of solar physics that is not shared by giant atmospheres.
97 - C. Cazorla , J. Boronat 2008
We report on the calculation of the ground-state atomic kinetic energy, $E_{k}$, and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crys tal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemanns ratio and atomic density profile around the positions of the perfect crystalline lattice. Our value for $E_{k}$ at the equilibrium density is $41.51(6)$ K, which agrees perfectly with the recent prediction made by Timms {it et al.}, $41(2)$ K, based on their deep-inelastic neutron scattering experiments carried out over the temperature range $4 - 20$ K, and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid $^4$He in terms of the Debye model, in order to size the relevance of anharmonic effects in Ne.
61 - D.C. Reeve , I.D. Howarth 2015
We present grids of limb-darkening coefficients computed from non-LTE, line-blanketed TLUSTY model atmospheres, covering effective-temperature and surface-gravity ranges of 15--55kK and 4.75 dex (cgs) down to the effective Eddington limit, at 1x, 1x, 0.5x (LMC), 0.2x (SMC), and 0.1x solar. Results are given for the Bessell UBVRIJKHL, Sloan ugriz, Stromgren ubvy, WFCAM ZYJHK, Hipparcos, Kepler, and Tycho passbands, in each case characterized by several different limb-darkening `laws. We examine the sensitivity of limb darkening to temperature, gravity, metallicity, microturbulent velocity, and wavelength, and make a comparison with LTE models. The dependence on metallicity is very weak, but limb darkening is a moderately strong function of log(g) in this temperature regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا