ﻻ يوجد ملخص باللغة العربية
We obtain high-precision limb-darkening measurements in five bands (V, V_E, I_E, I, and H) for the K3 III (Teff=4200 K, [Fe/H]=+0.3, log(g)=2.3) source of the Galactic bulge microlensing event EROS BLG-2000-5. These measurements are inconsistent with the predictions of atmospheric models at >10 sigma. While the disagreement is present in all bands, it is most apparent in I, I_E and V_E, in part because the data are better and in part because the intrinsic disagreement is stronger. We find that when limb-darkening profiles are normalized to have unit total flux, the I-band models for a broad range of temperatures all cross each other at a common point. The solar profile also passes through this point. However, the profile as measured by microlensing does not. We conjecture that the models have incorporated some aspect of solar physics that is not shared by giant atmospheres.
Aims: We present a detailed analysis of OGLE 2004-BLG-482, a relatively high-magnification single-lens microlensing event which exhibits clear extended-source effects. These events are relatively rare, but they potentially contain unique information
Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross ove
Characterization of the atmospheres of transiting exoplanets relies on accurate measurements of the extent of the optically thick area of the planet at multiple wavelengths with a precision $lesssim$100 parts per million (ppm). Next-generation instru
We present the PLANET photometric dataset for the binary-lens microlensing event MACHO 97-BLG-28 consisting of 696 I and V-band measurements, and analyze it to determine the radial surface brightness profile of the Galactic bulge source star. The mic
We provide here tables of stellar limb-darkening coefficients (LDCs) for the Ariel ESA M4 space mission. These tables include LDCs corresponding to different wavelength bins and white bands for the NIRSpec, AIRS-Ch0 and AIRS-Ch1 spectrographs, and th