ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Precicison Limb-Darkening Measurement of a K3 Giant Using Microlensing

66   0   0.0 ( 0 )
 نشر من قبل Dale L. Fields
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain high-precision limb-darkening measurements in five bands (V, V_E, I_E, I, and H) for the K3 III (Teff=4200 K, [Fe/H]=+0.3, log(g)=2.3) source of the Galactic bulge microlensing event EROS BLG-2000-5. These measurements are inconsistent with the predictions of atmospheric models at >10 sigma. While the disagreement is present in all bands, it is most apparent in I, I_E and V_E, in part because the data are better and in part because the intrinsic disagreement is stronger. We find that when limb-darkening profiles are normalized to have unit total flux, the I-band models for a broad range of temperatures all cross each other at a common point. The solar profile also passes through this point. However, the profile as measured by microlensing does not. We conjecture that the models have incorporated some aspect of solar physics that is not shared by giant atmospheres.


قيم البحث

اقرأ أيضاً

277 - M. Zub , A. Cassan , D. Heyrovsky 2009
Aims: We present a detailed analysis of OGLE 2004-BLG-482, a relatively high-magnification single-lens microlensing event which exhibits clear extended-source effects. These events are relatively rare, but they potentially contain unique information on the stellar atmosphere properties of their source star, as shown in this study. Methods: Our dense photometric coverage of the overall light curve and a proper microlensing modelling allow us to derive measurements of the OGLE 2004-BLG-482 source stars linear limb-darkening coefficients in three bands, including standard Johnson-Cousins I and R, as well as in a broad clear filter. In particular, we discuss in detail the problems of multi-band and multi-site modelling on the expected precision of our results. We also obtained high-resolution UVES spectra as part of a ToO programme at ESO VLT from which we derive the source stars precise fundamental parameters. Results: From the high-resolution UVES spectra, we find that OGLE 2004-BLG-482s source star is a red giant of MK type a bit later than M3, with Teff = 3667 +/- 150 K, log g = 2.1 +/- 1.0 and an assumed solar metallicity. This is confirmed by an OGLE calibrated colour-magnitude diagram. We then obtain from a detailed microlensing modelling of the light curve linear limb-darkening coefficients that we compare to model-atmosphere predictions available in the literature, and find a very good agreement for the I and R bands. In addition, we perform a similar analysis using an alternative description of limb darkening based on a principal component analysis of ATLAS limb-darkening profiles, and also find a very good agreement between measurements and model predictions.
176 - P. Fouque , D. Heyrovsky , S. Dong 2010
Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross ove r the source disk, which allows a determination of the angular size of the source and additionally a measurement of its limb darkening. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczynski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. In the case of microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification of about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darkening coefficients of the source in six photometric bands. The best-measured coefficients lead to an estimate of the source effective temperature of about 4700 +100-200 K. However, the photometric estimate from colour-magnitude diagrams favours a cooler temperature of 4200 +-100 K. As the limb-darkening measurements, at least in the CTIO/SMARTS2 V and I bands, are among the most accurate obtained, the above disagreement needs to be understood. A solution is proposed, which may apply to previous events where such a discrepancy also appeared.
Characterization of the atmospheres of transiting exoplanets relies on accurate measurements of the extent of the optically thick area of the planet at multiple wavelengths with a precision $lesssim$100 parts per million (ppm). Next-generation instru ments onboard the James Webb Space Telescope (JWST) are expected to achieve $sim$10 ppm precision for several tens of targets. A similar precision can be obtained in modelling only if other astrophysical effects, including the stellar limb-darkening, are accounted for properly. In this paper, we explore the limits on precision due to the mathematical formulas currently adopted to approximate the stellar limb-darkening, and to the use of limb-darkening coefficients obtained either from stellar-atmosphere models or empirically. We propose a new limb-darkening law with two coefficients, `power-2, which outperforms other two-coefficient laws adopted in the literature in most cases, and particularly for cool stars. Empirical limb-darkening based on two-coefficient formulas can be significantly biased, even if the light-curve residuals are nearly photon-noise limited. We demonstrate an optimal strategy to fitting for the four-coefficients limb-darkening in the visible, using prior information on the exoplanet orbital parameters to break some of the degeneracies that otherwise would prevent the convergence of the fit. Infrared observations taken with the James Webb Space Telescope (JWST) will provide accurate measurements of the exoplanet orbital parameters with unprecedented precision, which can be used as priors to improve the stellar limb-darkening characterization, and therefore the inferred exoplanet parameters, from observations in the visible, such as those taken with Kepler/K2, JWST, other past and future instruments.
We present the PLANET photometric dataset for the binary-lens microlensing event MACHO 97-BLG-28 consisting of 696 I and V-band measurements, and analyze it to determine the radial surface brightness profile of the Galactic bulge source star. The mic rolensed source, demonstrated to be a K giant by our independent spectroscopy, crossed the central isolated cusp of the lensing binary, generating a sharp peak in the light curve that was well-resolved by dense (3 - 30 minute) and continuous monitoring from PLANET sites in Chile, South Africa, and Australia. Our modeling of these data has produced stellar profiles for the source star in the I and V bands that are in excellent agreement with those predicted by stellar atmospheric models for K giants. The limb-darkening coefficients presented here are the first derived from microlensing, among the first for normal giants by any technique, and the first for any star as distant as the Galactic bulge. Modeling indicates that the lensing binary has a mass ratio q = 0.23 and an (instantaneous) separation in units of the angular Einstein ring radius of d = 0.69 . For a lens in the Galactic bulge, this corresponds to a typical stellar binary with a projected separation between 1 and 2 AU. If the lens lies closer, the separation is smaller, and one or both of the lens objects is in the brown dwarf regime. Assuming that the source is a bulge K2 giant at 8 kpc, the relative lens-source proper motion is mu = 19.4 +/- 2.6 km/s /kpc, consistent with a disk or bulge lens. If the non-lensed blended light is due to a single star, it is likely to be a young white dwarf in the bulge, consistent with the blended light coming from the lens itself.
We provide here tables of stellar limb-darkening coefficients (LDCs) for the Ariel ESA M4 space mission. These tables include LDCs corresponding to different wavelength bins and white bands for the NIRSpec, AIRS-Ch0 and AIRS-Ch1 spectrographs, and th ose corresponding to the VISPhot, FGS1 and FGS2 photometers. The LDCs are calculated with the open-source software ExoTETHyS for three complete grids of stellar atmosphere models obtained with the ATLAS9 and PHOENIX codes. The three model grids are complementary, as the PHOENIX code adopts more modern input physics and spherical geometry, while the models calculated with ATLAS9 cover wider ranges of stellar parameters. The LDCs obtained from corresponding models in the ATLAS9 and PHOENIX grids are compared in the main text. All together the models cover the following ranges in effective temperature ($1,500 , K le T_{mbox{eff}} le 50,000 , K$), surface gravity (0.0 dex $le log{g} le 6.0$ dex), and metallicity ($-5.0 le [M/H] le 1.0$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا