ﻻ يوجد ملخص باللغة العربية
We summarize the progress to date of our Legacy Science Program entitled The Formation and Evolution of Planetary Systems (FEPS) based on observations obtained with the Spitzer Space Telescope during its first year of operation. In addition to results obtained from our ground-based preparatory program and our early validation program, we describe new results from a survey for near-infrared excess emission from the youngest stars in our sample as well as a search for cold debris disks around sun-like stars. We discuss the implications of our findings with respect to current understanding of the formation and evolution of our own solar system.
We provide an overview of the Spitzer Legacy Program ``Formation and Evolution of Planetary Systems (FEPS) which was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sen
We present the science database produced by the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy program. Data reduction and validation procedures for the IRAC, MIPS, and IRS instruments are described in detail. We also derive stell
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet
We investigate the enrichment of the pre-solar cloud core with short lived radionuclides (SLRs), especially 26Al. The homogeneity and the surprisingly small spread in the ratio 26Al/27Al observed in the overwhelming majority of calcium-aluminium-rich
We present 3-160 micron photometry obtained with the IRAC and MIPS instruments for the first five targets from the Spitzer Legacy Science Program Formation and Evolution of Planetary Systems and 4-35 micron spectro-photometry obtained with the IRS fo