ﻻ يوجد ملخص باللغة العربية
We provide an overview of the Spitzer Legacy Program ``Formation and Evolution of Planetary Systems (FEPS) which was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of ~ 328 stars ranging in age from ~ 3 Myr to ~ 3 Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the time scales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide astronomical context for understanding whether our Solar System - and its habitable planet - is a common or a rare circumstance. Additional information about the FEPS project can be found on the team website: feps.as.arizona.edu
We summarize the progress to date of our Legacy Science Program entitled The Formation and Evolution of Planetary Systems (FEPS) based on observations obtained with the Spitzer Space Telescope during its first year of operation. In addition to result
We present the science database produced by the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy program. Data reduction and validation procedures for the IRAC, MIPS, and IRS instruments are described in detail. We also derive stell
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet
We investigate the enrichment of the pre-solar cloud core with short lived radionuclides (SLRs), especially 26Al. The homogeneity and the surprisingly small spread in the ratio 26Al/27Al observed in the overwhelming majority of calcium-aluminium-rich
We present 3-160 micron photometry obtained with the IRAC and MIPS instruments for the first five targets from the Spitzer Legacy Science Program Formation and Evolution of Planetary Systems and 4-35 micron spectro-photometry obtained with the IRS fo