ﻻ يوجد ملخص باللغة العربية
We have analyzed high-resolution, adaptive optics (AO) HK observations of the Arches cluster obtained with NAOS/CONICA. With a spatial resolution of 84 mas, the cluster center is uniquely resolved. From these data the present-day mass function (MF) of Arches is derived down to about 4 Msun. The integrated MF as well as the core and 2nd annulus MFs are consistent with a turn-over at 6-7 Msun. This turn-over indicates severe depletion of intermediate and low-mass stars in the Arches cluster, possibly caused by its evolution in the Galactic Center environment. The Arches MF represents the first resolved observation of a starburst cluster exhibiting a low-mass truncated MF. This finding has severe implications for stellar population synthesis modelling of extragalactic starbursts, the derivation of integrated properties such as the total mass of star clusters in dense environments, the survival of low-mass remnants from starburst populations, and chemical enrichment during starburst phases.
We investigate the time evolution of the mass distribution of pre-stellar cores (PSCs) and their transition to the initial stellar mass function (IMF) in the central parts of a molecular cloud (MC) under the assumption that the coalescence of cores i
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain h
We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combinatio
We present the luminosity function (LF) of star clusters in M51 based on HST/ACS observations taken as part of the Hubble Heritage project. The clusters are selected based on their size and with the resulting 5990 clusters we present one of the large
The Galactic center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic