ﻻ يوجد ملخص باللغة العربية
We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo radial velocity variation with a period of 10.483+/-0.002 d and an amplitude of ~350 km/s. A secondary radial velocity curve is also marginally detectable. We reanalyse archival NAOS-CONICA photometric survey data in combination with our radial velocity results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We model it as consisting of an 82+/-12 M_sun WN8-9h primary and a 60+/-8 M_sun O5-6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches age and composition. It also appears to be one of the most massive binaries detected to date; the primarys calculated initial mass of >~120 M_sun would arguably make this the most massive binary known in the Galaxy.
We present and use new spectra and narrow-band images, along with previously published broad-band images, of stars in the Arches cluster to extract photometry, astrometry, equivalent width, and velocity information. The data are interpreted with a wi
We present preliminary results of the first near-infrared variability study of the Arches cluster, using adaptive optics data from NIRI/Gemini and NACO/VLT. The goal is to discover eclipsing binaries in this young (2.5 +- 0.5 Myr), dense, massive clu
The Arches is one of the youngest, densest and most massive clusters in the Galaxy. As such it provides a unique insight into the lifecycle of the most massive stars known and the formation and survival of such stellar aggregates in the extreme condi
We study a sample composed of 28 of the brightest stars in the Arches cluster. We analyze K-band spectra obtained with the integral field spectrograph SINFONI on the VLT. Atmosphere models computed with the code CMFGEN are used to derive the effectiv
We present high-angular-resolution radio observations of the Arches cluster in the Galactic centre, one of the most massive young clusters in the Milky Way. The data were acquired in two epochs and at 6 and 10 GHz with the Karl G. Jansky Very Large A