ﻻ يوجد ملخص باللغة العربية
XMM-Newton, with the huge collecting area of its mirrors and the high quantum efficiency of its EPIC detectors, is the most sensitive X-ray observatory ever flown. This is strikingly evident during slew exposures, which, while yielding only at most 14 seconds of on-source exposure time, actually constitute a 2-10 keV survey ten times deeper than all other all-sky surveys. The current (April 2005) XMM archive contains 374 slew exposures which give a uniform coverage over around 10,000 square degrees (approx. 25% of the sky). Here we describe the results of pilot studies, the current status of the XMM-Newton Slew Survey, up-to-date results and our progress towards constructing a catalogue of slew detections in the full 0.2-12 keV energy band.
The low background, good spatial resolution and great sensitivity of the EPIC-pn camera on XMM-Newton give useful limits for the detection of extended sources even during the short exposures made during slewing maneouvers. In this paper we attempt to
We have attempted to analyse all the available data taken by XMM-Newton as it slews between targets. This slew survey, the resultant source catalogue and the analysis procedures used are described in an accompanying paper. In this letter we present t
The great collecting area of the mirrors coupled with the high quantum efficiency of the EPIC detectors have made XMM-Newton the most sensitive X-ray observatory flown to date. This is particularly evident during slew exposures which, while giving on
The XMM-Newton satellite is the most sensitive X-ray observatory flown to date due to the great collecting area of its mirrors coupled with the high quantum efficiency of the EPIC detectors. It performs slewing manoeuvers between observation targets
We investigate the properties of a variability-selected complete sample of AGN in order to identify the mechanisms which cause large amplitude X-ray variability on time scales of years. A complete sample of 24 sources was constructed, from AGN which