ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM-Newton Slew Survey: towards the XMMSL1 catalogue

126   0   0.0 ( 0 )
 نشر من قبل Pilar Esquej
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. P. Esquej




اسأل ChatGPT حول البحث

The XMM-Newton satellite is the most sensitive X-ray observatory flown to date due to the great collecting area of its mirrors coupled with the high quantum efficiency of the EPIC detectors. It performs slewing manoeuvers between observation targets tracking almost circular orbits through the ecliptic poles due to the Sun constraint. Slews are made with the EPIC cameras open and the other instruments closed, operating with the observing mode set to the one of the previous pointed observation and the medium filter in place. Slew observations from the EPIC-pn camera in FF, eFF and LW modes provide data, resulting in a maximum of 15 seconds of on-source time. These data can be used to give a uniform survey of the X-ray sky, at great sensitivity in the hard band compared with other X-ray all-sky surveys.

قيم البحث

اقرأ أيضاً

234 - A.M. Read 2008
In an attempt to catch new X-ray transients while they are still bright, the data taken by XMM-Newton as it slews between targets is being processed and cross-correlated with other X-ray observations as soon as the slew data appears in the XMM-Newton archive. A bright source, XMMSL1 J070542.7-381442, was detected on 9 Oct 2007 at a position where no previous X-ray source had been seen. The XMM slew data and optical data acquired with the Magellan Clay 6.5m telescope were used to classify the new object. No XMM slew X-ray counts are detected above 1keV and the source is seen to be ~750 times brighter than the ROSAT All-Sky Survey upper limit at that position. The normally m(V)~16 star, USNO-A2.0 0450-03360039, which lies 3.5 from the X-ray position, was seen in our Magellan data to be very much enhanced in brightness. Our optical spectrum showed emission lines which identified the source as a nova in the auroral phase. Hence this optical source is undoubtedly the progenitor of the X-ray source - a new nova (now also known as V598 Pup). The X-ray spectrum indicates that the nova was in a super-soft state (with kT(eff)~35eV). We estimate the distance to the nova to be ~3kpc. Analysis of archival robotic optical survey data shows a rapid decline light curve consistent with that expected for a very fast nova. The XMM-Newton slew data present a powerful opportunity to find new X-ray transient objects while they are still bright. Here we present the first such source discovered by the analysis of near real-time slew data.
68 - A. M. Read 2005
XMM-Newton, with the huge collecting area of its mirrors and the high quantum efficiency of its EPIC detectors, is the most sensitive X-ray observatory ever flown. This is strikingly evident during slew exposures, which, while yielding only at most 1 4 seconds of on-source exposure time, actually constitute a 2-10 keV survey ten times deeper than all other all-sky surveys. The current (April 2005) XMM archive contains 374 slew exposures which give a uniform coverage over around 10,000 square degrees (approx. 25% of the sky). Here we describe the results of pilot studies, the current status of the XMM-Newton Slew Survey, up-to-date results and our progress towards constructing a catalogue of slew detections in the full 0.2-12 keV energy band.
345 - V. Lazaro 2005
The low background, good spatial resolution and great sensitivity of the EPIC-pn camera on XMM-Newton give useful limits for the detection of extended sources even during the short exposures made during slewing maneouvers. In this paper we attempt to illustrate the potential of the XMM-Newton slew survey as a tool for analysing flux-limited samples of clusters of galaxies and other sources of spatially extended X-ray emission.
We have attempted to analyse all the available data taken by XMM-Newton as it slews between targets. This slew survey, the resultant source catalogue and the analysis procedures used are described in an accompanying paper. In this letter we present t he initial science results from the survey. To date, detailed source-searching has been performed in three X-ray bands (soft, hard and total) in the EPIC-pn 0.2-12 keV band over ~6300 sq.degrees (~15% of the sky), and of order 4000 X-ray sources have been detected (~55% of which have IDs). A great variety of sources are seen, including AGN, galaxies, clusters and groups, active stars, SNRs, low- and high-mass XRBs and white dwarfs. In particular, as this survey constitutes the deepest ever hard-band 2-12 keV all-sky survey, a large number of hard sources are detected. Furthermore, the great sensitivity and low-background of the EPIC-pn camera are especially suited to emission from extended sources, and interesting spatial structure is observed in many supernova remnants and clusters of galaxies. The instrument is very adept at mapping large areas of the X-ray sky. Also, as the slew survey is well matched to the ROSAT all-sky survey, long-term variability studies are possible, and a number of extremely variable X-ray sources, some possibly due to the tidal disruption of stars by central supermassive black holes, have been discovered.
80 - R. Saxton 2005
The great collecting area of the mirrors coupled with the high quantum efficiency of the EPIC detectors have made XMM-Newton the most sensitive X-ray observatory flown to date. This is particularly evident during slew exposures which, while giving on ly 15 seconds of on-source time, actually constitute a 2-10 keV survey ten times deeper than current all-sky catalogues. Here we report on progress towards making a catalogue of slew detections constructed from the full, 0.2-12 keV energy band and discuss the challenges associated with processing the slew data. The fast (90 degrees per hour) slew speed results in images which are smeared, by different amounts depending on the readout mode, effectively changing the form of the point spread function. The extremely low background in slew images changes the optimum source searching criteria such that searching a single image using the full energy band is seen to be more sensitive than splitting the data into discrete energy bands. False detections due to optical loading by bright stars, the wings of the PSF in very bright sources and single-frame detector flashes are considered and techniques for identifying and removing these spurious sources from the final catalogue are outlined. Finally, the attitude reconstruction of the satellite during the slewing manoeuver is complex. We discuss the implications of this on the positional accuracy of the catalogue.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا