ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of the timing properties of the black-hole transient GX 339-4 during its 2002/2003 outburst

278   0   0.0 ( 0 )
 نشر من قبل Tomaso Belloni
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Belloni




اسأل ChatGPT حول البحث

We present the results of the timing and color analysis of more than two hundred RXTE/PCA observations of the bright black-hole transient GX 339-4 obtained during its 2002/2003 outburst. The color-intensity evolution of the system, coupled to the properties of its fast time variability, allow the identification of four separate states. Depending on the state, strong noise is detected, together with a variety of quasi-periodic oscillations at frequencies from 0.2 to 8 Hz. We present a characterization of the timing parameters of these states and compare them to what has been observed in other systems. These results, together with those obtained from energy spectra, point towards a common evolution of black-hole transients through their outbursts.

قيم البحث

اقرأ أيضاً

146 - Q. C. Shui , H. X. Yin , S. Zhang 2021
We investigate systematically four outbursts of black hole system GX 339-4 observed by the Rossi X-ray Timing Explorer (RXTE) in both spectral and timing domains and find that these outbursts have some common properties although they experience diffe rent q tracks in the hardness-intensity diagram (HID). While the spectral indices are around 1.5 in low hard state (LHS), 2.4 in soft intermediate state (SIMS) and high soft state (HSS), the spectral parameters of thermal, non-thermal and reflection components vary significantly in transitions from LHS to HIMS. Also the quasi periodic oscillation (QPO) shows a peculiar behavior during the state transition between LHS and HIMS: the RMS drop of type C fundamental QPO is accompanied with showing-up of the second harmonic. Interestingly, the QPO RMS is found to have a similar linear relationship with the non-thermal fraction of emission in different outbursts. These findings provide more clues to our understanding the outburst of the black hole X-ray binary system.
117 - S.Q.Park 2003
We present an X-ray spectral and timing analysis of 4U 1543-47 during its 2002 outburst based on 49 pointed observations obtained using the Rossi X-ray Timing Explorer (RXTE). The outburst reached a peak intensity of 4.2 Crab in the 2-12 keV band and declined by a factor of 32 throughout the month-long observation. A 21.9 +- 0.6 mJy radio flare was detected at 1026.75 MHz two days before the X-ray maximum; the radio source was also detected late in the outburst, after the X-ray source entered the low hard state. The X-ray light curve exhibits the classic shape of a rapid rise and an exponential decay. The spectrum is soft and dominated by emission from the accretion disk. The continuum is fit with a multicolor disk blackbody (kT_{max} = 1.04 keV) and a power-law (Gamma ~ 2.7). Midway through the decay phase, a strong low-frequency QPO (nu = 7.3-8.1 Hz) was present for several days. The spectra feature a broad Fe K alpha line that is asymmetric, suggesting that the line is due to relativistic broadening rather than Comptonization. Relativistic Laor models provide much better fits to the line than non-relativistic Gaussian models, particularly near the beginning and end of our observations. The line fits yield estimates for the inner disk radius that are within 6 R_g; this result and additional evidence indicates that this black hole may have a non-zero angular momentum.
We present results from the first multi-epoch X-ray/IR fast-photometry campaign on the black-hole transient GX 339--4, during its 2015 outburst decay. We studied the evolution of the power spectral densities finding strong differences between the two bands. The X-ray power spectral density follows standard patterns of evolution, plausibly reflecting changes in the accretion flow. The IR power spectral density instead evolves very slowly, with a high-frequency break consistent with remaining constant at $0.63 pm 0.03$ Hz throughout the campaign. We discuss this result in the context of the currently available models for the IR emission in black-hole transients. While all models will need to be tested quantitatively against this unexpected constraint, we show that an IR emitting relativistic jet which filters out the short-timescales fluctuations injected from the accretion inflow appears as the most plausible scenario.
GX 339-4 has been observed by BeppoSAX twice in spring 1997 as part of a longer monitoring program. The source was close to the highest levels (50 mCrab) of the extended low state (as measured by the XTE ASM during the last 2 years). Its spectrum was quite hard, similar to the Exosat 1984 off state, but 40 times stronger. The source is detected up to more than 120 keV, enabling the possibility to study its high energy spectrum
Galactic black hole binaries produce powerful outflows with emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339-4 during the decay of its recent 2010-2011 outburst, after the transition to the hard state. We also outline the results of very sensitive radio observations conducted with the Australia Telescope Compact Array, along with a series of near-infrared, optical (OIR) and X-ray observations, allowing for the first time the re-ignition of the compact jets to be observed over a wide range of wavelengths. The compact jets first turn on at radio frequencies with an optically thin spectrum that later evolves to optically thick synchrotron emission. An OIR reflare is observed about ten days after the onset of radio and hard X-ray emission, likely reflecting the necessary time to build up enough density, as well as to have acceleration (e.g. through shocks) along an extended region in the jets. The Herschel measurements are consistent with an extrapolation of the radio inverted power-law spectrum, but they highlight a more complex radio to OIR spectral energy distribution for the jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا