ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical constraints from near-infrared fast photometry of the black-hole transient GX 339-4

96   0   0.0 ( 0 )
 نشر من قبل Federico Maria Vincentelli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from the first multi-epoch X-ray/IR fast-photometry campaign on the black-hole transient GX 339--4, during its 2015 outburst decay. We studied the evolution of the power spectral densities finding strong differences between the two bands. The X-ray power spectral density follows standard patterns of evolution, plausibly reflecting changes in the accretion flow. The IR power spectral density instead evolves very slowly, with a high-frequency break consistent with remaining constant at $0.63 pm 0.03$ Hz throughout the campaign. We discuss this result in the context of the currently available models for the IR emission in black-hole transients. While all models will need to be tested quantitatively against this unexpected constraint, we show that an IR emitting relativistic jet which filters out the short-timescales fluctuations injected from the accretion inflow appears as the most plausible scenario.

قيم البحث

اقرأ أيضاً

Galactic black hole binaries produce powerful outflows with emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339-4 during the decay of its recent 2010-2011 outburst, after the transition to the hard state. We also outline the results of very sensitive radio observations conducted with the Australia Telescope Compact Array, along with a series of near-infrared, optical (OIR) and X-ray observations, allowing for the first time the re-ignition of the compact jets to be observed over a wide range of wavelengths. The compact jets first turn on at radio frequencies with an optically thin spectrum that later evolves to optically thick synchrotron emission. An OIR reflare is observed about ten days after the onset of radio and hard X-ray emission, likely reflecting the necessary time to build up enough density, as well as to have acceleration (e.g. through shocks) along an extended region in the jets. The Herschel measurements are consistent with an extrapolation of the radio inverted power-law spectrum, but they highlight a more complex radio to OIR spectral energy distribution for the jets.
We investigate variability of optical and near-infrared light curves of the X-ray binary GX 339-4 on a timescale of days. We use the data in four filters from six intervals corresponding to the soft state and from four intervals corresponding to the quiescent state. In the soft state, we find prominent oscillations with the average period P = 1.772 $pm$ 0.003 d, which is offset from the measured orbital period of the system by 0.7 per cent. We suggest that the measured periodicity originates from the superhumps. In line with this interpretation we find no periodicity in the quiescent state. The obtained period excess $epsilon$ is below typical values found for cataclysmic variables for the same mass ratio of the binary. We discuss implications of this finding in the context of the superhump theory.
We use simultaneous Swift and RXTE observations of the black hole binary GX 339-4 to measure the inner radius of its accretion disk in the hard state down to 0.4% L_{Edd} via modeling of the thermal disk emission and the relativistically broadened ir on line. For the luminosity range covered in this work, our results rule out a significantly truncated disk at 100-1000 R_g as predicted by the advection-dominated accretion flow paradigm. The measurements depend strongly on the assumed emission geometry, with most results providing no clear picture of radius evolution. If the inclination is constrained to roughly 20 degrees, however, the measurements based on the thermal disk emission suggest a mildly receding disk at a luminosity of 0.4% L_{Edd}. The iron abundance varies between roughly 1-2 solar abundances, with the i=20 degrees results indicating a negative correlation with luminosity, though this is likely due to a change in disk illumination geometry.
Black hole X-ray binaries show signs of non-thermal emission in the optical/near-infrared range. We analyze the optical/near-infrared SMARTS data on GX339$-$4 over the 2002--2011 period. Using the soft state data, we estimate the interstellar extinct ion towards the source and characteristic color temperatures of the accretion disk. We show that various spectral states of regular outbursts occupy similar regions on the color-magnitude diagrams, and that transitions between the states proceed along the same tracks despite substantial differences in the observed light curves morphology. We determine the typical duration of the hard-to-soft and soft-to-hard state transitions and the hard state at the decaying stage of the outburst to be one, two and four weeks, respectively. We find that the failed outbursts cannot be easily distinguished from the regular ones at their early stages, but if the source reaches 16 mag in $V$-band, it will transit to the soft state. By subtracting the contribution of the accretion disk, we obtain the spectra of the non-thermal component, which have constant, nearly flat shape during the transitions between the hard and soft states. In contrast to the slowly evolving non-thermal component seen at optical and near-infrared wavelengths, the mid-infrared spectrum is strongly variable on short timescales and sometimes shows a prominent excess with a cutoff below $10^{14}$ Hz. We show that the radio to optical spectrum can be modeled using three components corresponding to the jet, hot flow and irradiated accretion disk.
We extract all the XMM-Newton EPIC pn burst mode spectra of GX 339-4, together with simultaneous/contemporaneous RXTE data. These include three disc dominated and two soft intermediate spectra, and the combination of broad bandpass/moderate spectral resolution gives some of the best data on these bright soft states in black hole binaries. The disc dominated spectra span a factor three in luminosity, and all show that the disc emission is broader than the simplest multicolour disc model. This is consistent with the expected relativistic smearing and changing colour temperature correction produced by atomic features in the newest disc models. However, these models do not match the data at the 5 per cent level as the predicted atomic features are not present in the data, perhaps indicating that irradiation is important even when the high energy tail is weak. Whatever the reason, this means that the data have smaller errors than the best physical disc models, forcing use of more phenomenological models for the disc emission. We use these for the soft intermediate state data, where previous analysis using a simple disc continuum found an extremely broad residual, identified as the red wing of the iron line from reflection around a highly spinning black hole. However, the iron line energy is close to where the disc and tail have equal fluxes, so using a broader disc continuum changes the residual iron line profile dramatically. With a broader disc continuum model, the inferred line is formed outside of 30 ${rm{R_g}}$, so cannot constrain black hole spin. We caution that a robust determination of black hole spin from the iron line profile is very difficult where the disc makes a significant contribution at the iron line energy i.e. in most bright black hole states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا