ﻻ يوجد ملخص باللغة العربية
Interactions between disc-surrounded stars might play a vital role in the formation of planetary systems. Here a first parameter study of the effects of encounters on low-mass discs is presented. The dependence of the mass and angular momentum transport on the periastron distance, the relative mass of the encountering stars and eccentricity of the encounter is investigated in detail. This is done for prograde and retrograde coplanar encounters as well as non-coplanar encounters. For distant coplanar encounters our simulation results agree with the analytical approximation of the angular momentum loss by Ostriker(1994). However, for close or high-mass encounters, significant differences to this approximation are found. This is especially so in the case of retrograde encounters, where the analytical result predict no angular momentum loss regardless of the periastron distance whereas the simulations find up to ~ 20% loss for close encounters. For the non-coplanar case a more complex dependency on the inclination between orbital path and disc plane is found than for distant encounters. For the coplanar prograde case new fitting formulae for the mass and angular momentum loss are obtained, which cover the whole range from grazing to distant encounters. In addition, the final disc size and the mass exchange between discs is examined, demonstrating that for equal mass stars in encounters as close as 1.5 the disc radius, the disc size only is reduced by approximately 10%.
We present a parameter study of the possibility of tidally triggered disk instability. Using a restricted N-body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M_sun can
A prerequisite for the formation of stars and planetary systems is that angular momentum is transported in some way from the inner regions of the accretion disc. Tidal effects may play an important part in this angular momentum transport. Here the an
We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the
Simulations of the collapse and fragmentation of turbulent molecular clouds and dense young clusters show that encounters between disc-surrounded stars are relatively common events which should significantly influence the resulting disc structure. In
Investigations of stellar encounters in cluster environments have demonstrated their potential influence on the mass and angular momentum of protoplanetary discs around young stars. In this study it is investigated in how far the initial surface dens