ترغب بنشر مسار تعليمي؟ اضغط هنا

Induced planet formation in stellar clusters - a parameter study of star-disk encounters

54   0   0.0 ( 0 )
 نشر من قبل Ingo Thies
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ingo Thies




اسأل ChatGPT حول البحث

We present a parameter study of the possibility of tidally triggered disk instability. Using a restricted N-body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M_sun can probably induce gravitational instabilities in the pre-planetary solar disk for prograde passages with minimum separations below 80-170 AU for isothermal or adiabatic disks. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters (Scally & Clarke 2001; Bonnell et al. 2001). The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the existence of Uranus and Neptune, whose formation timescale of about 100 Myr (Wuchterl, Guillot & Lissauer 2000) is inconsistent with the disk lifetimes of about a few Myr according to observational data by Haisch, Lada & Lada (2001). The relatively small gas/solid ratio in Uranus and Neptune can be matched if the perturbing fly-by occurred after early gas depletion of the solar system, i.e. when the solar system was older than about 5 Myr. We also confirm earlier results by Heller (1993) that the observed 7 degree tilt of the solar equatorial plane relative to the ecliptic plane could be the consequence of such a close encounter.



قيم البحث

اقرأ أيضاً

Interactions between disc-surrounded stars might play a vital role in the formation of planetary systems. Here a first parameter study of the effects of encounters on low-mass discs is presented. The dependence of the mass and angular momentum transp ort on the periastron distance, the relative mass of the encountering stars and eccentricity of the encounter is investigated in detail. This is done for prograde and retrograde coplanar encounters as well as non-coplanar encounters. For distant coplanar encounters our simulation results agree with the analytical approximation of the angular momentum loss by Ostriker(1994). However, for close or high-mass encounters, significant differences to this approximation are found. This is especially so in the case of retrograde encounters, where the analytical result predict no angular momentum loss regardless of the periastron distance whereas the simulations find up to ~ 20% loss for close encounters. For the non-coplanar case a more complex dependency on the inclination between orbital path and disc plane is found than for distant encounters. For the coplanar prograde case new fitting formulae for the mass and angular momentum loss are obtained, which cover the whole range from grazing to distant encounters. In addition, the final disc size and the mass exchange between discs is examined, demonstrating that for equal mass stars in encounters as close as 1.5 the disc radius, the disc size only is reduced by approximately 10%.
The discovery of planetary systems outside of the solar system has challenged some of the tenets of planetary formation. Among the difficult-to-explain observations, are systems with a giant planet orbiting a very-low mass star, such as the recently discovered GJ~3512b planetary system, where a Jupiter-like planet orbits an $M$-star in a tight and eccentric orbit. Systems such as this one are not predicted by the core accretion theory of planet formation. Here we suggest a novel mechanism, in which the giant planet is born around a more typical Sun-like star ($M_{*,1}$), but is subsequently exchanged during a dynamical interaction with a flyby low-mass star ($M_{*,2}$). We perform state-of-the-art $N$-body simulations with $M_{*,1}=1M_odot$ and $M_{*,2}=0.1M_odot$ to study the statistical outcomes of this interaction, and show that exchanges result in high eccentricities for the new orbit around the low-mass star, while about half of the outcomes result in tighter orbits than the planet had around its birth star. We numerically compute the cross section for planet exchange, and show that an upper limit for the probability per planetary system to have undergone such an event is $Gammasim 4.4(M_{rm c}/100M_odot)^{-2}(a_{rm p}/{rm AU}) (sigma/1,{rm km},{rm s}^{-1})^{5}$Gyr$^{-1}$, where $a_{rm p}$ is the planet semi-major axis around the birth star, $sigma$ the velocity dispersion of the star cluster, and $M_{rm c}$ the total mass of the star cluster. Hence these planet exchanges could be relatively common for stars born in open clusters and groups, should already be observed in the exoplanet database, and provide new avenues to create unexpected planetary architectures.
The primary aim of this work is to examine the effect of parabolic stellar encounters on the evolution of a Jovian-mass giant planet forming within a protoplanetary disc. We consider the effect on both the mass accretion and the migration history as a function of encounter distance. We use a grid-based hydrodynamics code to perform 2D simulations of a system consisting of a giant planet embedded within a gaseous disc orbiting around a star, which is perturbed by a passing star on a prograde, parabolic orbit. The disc model extends out to 50 AU, and parabolic encounters are considered with impact parameters ranging from 100 - 250 AU. In agreement with previous work, we find that the disc is significantly tidally truncated for encounters < 150 AU, and the removal of angular momentum from the disc by the passing star causes a substantial inflow of gas through the disc. The gap formed by the embedded planet becomes flooded with gas, causing the gas accretion rate onto the planet to increase abruptly. Gas flow through the gap, and into the inner disc, causes the positive inner disc torques exerted on the planet to increase, resulting in a sustained period of outward migration. For weaker interactions, corresponding to an encounter distance of > 250 AU, we find that the planet-disc system experiences minimal perturbation. Our results indicate that stellar fly-bys in young clusters may significantly modify the masses and orbital parameters of giant planets forming within protostellar discs. Planets that undergo such encounters are expected to be more massive, and to orbit with larger semimajor axes, than planets in systems which have not experienced parabolic encounters.
The discovery of close orbiting extrasolar giant planets led to extensive studies of disk planet interactions and the forms of migration that can result as a means of accounting for their location. Early work established the type I and type II migrat ion regimes for low mass embedded planets and high mass gap forming planets respectively. While providing an attractive means of accounting for close orbiting planets intially formed at several AU, inward migration times for objects in the earth mass range were found to be disturbingly short, making the survival of giant planet cores an issue. Recent progress in this area has come from the application of modern numerical techniques which make use of up to date supercomputer resources. These have enabled higher resolution studies of the regions close to the planet and the initiation of studies of planets interacting with disks undergoing MHD turbulence. This work has led to indications of how the inward migration of low to intermediate mass planets could be slowed down or reversed. In addition, the possibility of a new very fast type III migration regime, that can be directed inwards or outwards, that is relevant to partial gap forming planets in massive disks has been investigated.
To shed light on the time evolution of local star formation episodes in M33, we study the association between 566 Giant Molecular Clouds (GMCs), identified through the CO (J=2-1) IRAM-all-disk survey, and 630 Young Stellar Cluster Candidates (YSCCs), selected via Spitzer-24~$mu$m emission. The spatial correlation between YSCCs and GMCs is extremely strong, with a typical separation of 17~pc, less than half the CO(2--1) beamsize, illustrating the remarkable physical link between the two populations. GMCs and YSCCs follow the HI filaments, except in the outermost regions where the survey finds fewer GMCs than YSCCs, likely due to undetected, low CO-luminosity clouds. The GMCs have masses between 2$times 10^4$ and 2$times 10^6$ M$_odot$ and are classified according to different cloud evolutionary stages: inactive clouds are 32$%$ of the total, classified clouds with embedded and exposed star formation are 16$%$ and 52$%$ of the total respectively. Across the regular southern spiral arm, inactive clouds are preferentially located in the inner part of the arm, possibly suggesting a triggering of star formation as the cloud crosses the arm. Some YSCCs are embedded star-forming sites while the majority have GALEX-UV and H$alpha$ counterparts with estimated cluster masses and ages. The distribution of the non-embedded YSCC ages peaks around 5~Myrs with only a few being as old as 8--10~Myrs. These age estimates together with the number of GMCs in the various evolutionary stages lead us to conclude that 14~Myrs is a typical lifetime of a GMC in M33, prior to cloud dispersal. The inactive and embedded phases are short, lasting about 4 and 2~Myrs respectively. This underlines that embedded YSCCs rapidly break out from the clouds and become partially visible in H$alpha$ or UV long before cloud dispersal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا