ﻻ يوجد ملخص باللغة العربية
We present a parameter study of the possibility of tidally triggered disk instability. Using a restricted N-body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M_sun can probably induce gravitational instabilities in the pre-planetary solar disk for prograde passages with minimum separations below 80-170 AU for isothermal or adiabatic disks. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters (Scally & Clarke 2001; Bonnell et al. 2001). The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the existence of Uranus and Neptune, whose formation timescale of about 100 Myr (Wuchterl, Guillot & Lissauer 2000) is inconsistent with the disk lifetimes of about a few Myr according to observational data by Haisch, Lada & Lada (2001). The relatively small gas/solid ratio in Uranus and Neptune can be matched if the perturbing fly-by occurred after early gas depletion of the solar system, i.e. when the solar system was older than about 5 Myr. We also confirm earlier results by Heller (1993) that the observed 7 degree tilt of the solar equatorial plane relative to the ecliptic plane could be the consequence of such a close encounter.
Interactions between disc-surrounded stars might play a vital role in the formation of planetary systems. Here a first parameter study of the effects of encounters on low-mass discs is presented. The dependence of the mass and angular momentum transp
The discovery of planetary systems outside of the solar system has challenged some of the tenets of planetary formation. Among the difficult-to-explain observations, are systems with a giant planet orbiting a very-low mass star, such as the recently
The primary aim of this work is to examine the effect of parabolic stellar encounters on the evolution of a Jovian-mass giant planet forming within a protoplanetary disc. We consider the effect on both the mass accretion and the migration history as
The discovery of close orbiting extrasolar giant planets led to extensive studies of disk planet interactions and the forms of migration that can result as a means of accounting for their location. Early work established the type I and type II migrat
To shed light on the time evolution of local star formation episodes in M33, we study the association between 566 Giant Molecular Clouds (GMCs), identified through the CO (J=2-1) IRAM-all-disk survey, and 630 Young Stellar Cluster Candidates (YSCCs),