ترغب بنشر مسار تعليمي؟ اضغط هنا

Subaru Mid-infrared Imaging of the Quadruple Lenses PG1115+080 and B1422+231: Limits on Substructure Lensing

109   0   0.0 ( 0 )
 نشر من قبل Masashi Chiba
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Masashi Chiba




اسأل ChatGPT حول البحث

We present mid-infrared imaging at 11.7 mu m for the quadruple lens systems, PG1115+080 and B1422+231, using the cooled mid-infrared camera and spectrometer (COMICS) attached on the Subaru telescope. These lensed QSOs are characterized by their anomalous optical and radio flux ratios as obtained for (A1, A2) images of PG1115+080 and (A, B, C) images of B1422+231, respectively, i.e., such flux ratios are hardly reproduced by lens models with smooth mass distribution. Our mid-infrared observations for these images have revealed that the mid-infrared flux ratio A2/A1 of PG1115+080 is virtually consistent with smooth lens models (but inconsistent with the optical flux ratio), whereas for B1422+231, the mid-infrared flux ratios among (A, B, C) are in good agreement with the radio flux ratios. We also identify a clear infrared bump in the spectral energy distributions of these QSOs, thereby indicating that the observed mid-infrared fluxes originate from a hot dust torus around a QSO nucleus. Based on the size estimate of the dust torus, we place limits on the mass of a substructure in these lens systems, causing the anomalous optical or radio flux ratios. For PG1115+080, the mass of a substructure inside an Einstein radius, M_E, is < 16 Msun, corresponding to either a star or a low-mass CDM subhalo having the mass of M_{100}^{SIS} < 2.2 * 10^4 Msun inside radius of 100 pc if modeled as a singular isothermal sphere (SIS). For B1422+231, we obtain M_E > 209 Msun, indicating that a CDM subhalo is more likely, having the mass of M_{100}^{SIS} > 7.4 * 10^4 Msun

قيم البحث

اقرأ أيضاً

92 - M. Bradac 2001
In this work we investigate the gravitationally lensed system B1422+231. High--quality VLBI image positions, fluxes and shapes as well as an optical HST lens galaxy position are used. First, two simple and smooth models for the lens galaxy are applie d to fit observed image positions and fluxes; no even remotely acceptable model was found. Such models also do not accurately reproduce the image shapes. In order to fit the data successfully, mass substructure has to be added to the lens, and its level is estimated. To explore expectations about the level of substructure in galaxies and its influence on strong lensing, N-body simulation results of a model galaxy are employed. By using the mass distribution of this model galaxy as a lens, synthetic data sets of different four image system configurations are generated and simple lens models are again applied to fit them. The difficulties in fitting these lens systems turn out to be similar to the case of some real gravitationally lensed systems, thus possibly providing evidence for the presence and strong influence of substructure in the primary lens galaxy.
77 - E. Ros 2000
We present wide-field images of the quadruple gravitational lenses B1422+231 and MGJ0414+0534 obtained from global Very Long Baseline Interferometry (VLBI) observations at 8.4 GHz on 23 November 1997. We present also a lens model for MGJ0414+0534, wh ich reproduces the core positions and flux densities of the VLBI images, combining a singular isothermal ellipsoid with external shear, and a singular isothermal sphere to represent, respectively, the main lens galaxy and its neighbor, a faint galaxy near one of the images.
Optical photometry is presented for the quadruple gravitational lens PG1115+080. A preliminary reduction of data taken from November 1995 to June 1996 gives component ``C leading component ``B by 23.7+/-3.4 days and components ``A1 and ``A2 by 9.4 da ys. A range of models has been fit to the image positions, none of which gives an adequate fit. The best fitting and most physically plausible of these, taking the lensing galaxy and the associated group of galaxies to be singular isothermal spheres, gives a Hubble constant of 42 km/s/Mpc for Omega=1, with an observational uncertainty of 14%, as computed from the B-C time delay measurement. Taking the lensing galaxy to have an approximately E5 isothermal mass distribution yields H0=64 km/sec/Mpc while taking the galaxy to be a point mass gives H0=84 km/sec/Mpc. The former gives a particularly bad fit to the position of the lensing galaxy, while the latter is inconsistent with measurements of nearby galaxy rotation curves. Constraints on these and other possible models are expected to improve with planned HST observations.
We determine the most likely dark-matter fraction in the elliptical galaxy quadruply lensing the quasar PG1115+080 based on analyses of the X-ray fluxes of the individual images in 2000 and 2008. Between the two epochs, the A2 image of PG1115+080 bri ghtened relative to the other images by a factor of six in X-rays. We argue that the A2 image had been highly demagnified in 2000 by stellar microlensing in the intervening galaxy and has recently crossed a caustic, thereby creating a new pair of micro-images and brightening in the process. Over the same period, the A2 image has brightened by a factor of only 1.2 in the optical. The most likely ratio of smooth material (dark matter) to clumpy material (stars) in the lensing galaxy to explain the observations is ~90% of the matter in a smooth dark-matter component and ~10% in stars.
Gravitational lenses that produce multiple images of background quasars can be an invaluable cosmological tool. Deriving cosmological parameters, however, requires modeling the potential of the lens itself. It has been estimated that up to a quarter of lensing galaxies are associated with a group or cluster which perturbs the gravitational potential. Detection of X-ray emission from the group or cluster can be used to better model the lens. We report on the first detection in X-rays of the group associated with the lensing system PG 1115+080 and the first X-ray image of the group associated with the system B1422+231. We find a temperature and rest-frame luminosity of 0.8 +/- 0.1 keV and 7 +/- 2 x 10^{42} ergs/s for PG 1115+080 and 1.0 +infty/-0.3 keV and 8 +/- 3 x 10^{42} ergs/s for B1422+231. We compare the spatial and spectral characteristics of the X-ray emission to the properties of the group galaxies, to lens models, and to the general properties of groups at lower redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا