ﻻ يوجد ملخص باللغة العربية
In this work we investigate the gravitationally lensed system B1422+231. High--quality VLBI image positions, fluxes and shapes as well as an optical HST lens galaxy position are used. First, two simple and smooth models for the lens galaxy are applied to fit observed image positions and fluxes; no even remotely acceptable model was found. Such models also do not accurately reproduce the image shapes. In order to fit the data successfully, mass substructure has to be added to the lens, and its level is estimated. To explore expectations about the level of substructure in galaxies and its influence on strong lensing, N-body simulation results of a model galaxy are employed. By using the mass distribution of this model galaxy as a lens, synthetic data sets of different four image system configurations are generated and simple lens models are again applied to fit them. The difficulties in fitting these lens systems turn out to be similar to the case of some real gravitationally lensed systems, thus possibly providing evidence for the presence and strong influence of substructure in the primary lens galaxy.
We present mid-infrared imaging at 11.7 mu m for the quadruple lens systems, PG1115+080 and B1422+231, using the cooled mid-infrared camera and spectrometer (COMICS) attached on the Subaru telescope. These lensed QSOs are characterized by their anoma
We present new spectroscopy of the z=3.62 gravitationally lensed quasar B1422+117 from the Gemini North GMOS integral field spectrograph. We observe significant differential magnifications between the broad emission lines and the continuum, as well a
We present polarisation observations of the gravitational lens system B1422+231 made at 8.4 GHz using the VLBA and the 100m telescope at Effelsberg. All four images of the quasar show structure on the milliarcsec scale. The three bright images show t
The inversion of gravitational lens systems is hindered by the fact that multiple mass distributions are often equally compatible with the observed properties of the images. Besides using clear examples to illustrate the effect of the so-called monop
We present wide-field images of the quadruple gravitational lenses B1422+231 and MGJ0414+0534 obtained from global Very Long Baseline Interferometry (VLBI) observations at 8.4 GHz on 23 November 1997. We present also a lens model for MGJ0414+0534, wh