ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z=0.716

61   0   0.0 ( 0 )
 نشر من قبل Krzysztof Stanek
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present deep optical photometry of the afterglow of gamma-ray burst (GRB) 041006 and its associated hypernova obtained over 65 days after detection (55 R-band epochs on 10 different nights). Our early data (t<4 days) joined with published GCN data indicates a steepening decay, approaching F_nu ~t^{-0.6} at early times (<<1 day) and F_nu ~t^{-1.3} at late times. The break at t_b=0.16+-0.04 days is the earliest reported jet break among all GRB afterglows. During our first night, we obtained 39 exposures spanning 2.15 hours from 0.62 to 0.71 days after the burst that reveal a smooth afterglow, with an rms deviation of 0.024 mag from the local power-law fit, consistent with photometric errors. After t~4 days, the decay slows considerably, and the light curve remains approximately flat at R~24 mag for a month before decaying by another magnitude to reach R~25 mag two months after the burst. This ``bump is well-fitted by a k-corrected light curve of SN1998bw, but only if stretched by a factor of 1.38 in time. In comparison with the other GRB-related SNe bumps, GRB 041006 stakes out new parameter space for GRB/SNe, with a very bright and significantly stretched late-time SN light curve. Within a small sample of fairly well observed GRB/SN bumps, we see a hint of a possible correlation between their peak luminosity and their ``stretch factor, broadly similar to the well-studied Phillips relation for the type Ia supernovae.



قيم البحث

اقرأ أيضاً

105 - Y. Urata , K.Y. Huang , Y.L. Qiu 2006
Observations of the optical afterglow of GRB 041006 with the Kiso Observatory 1.05 m Schmidt telescope, the Lulin Observatory 1.0 m telescope and the Xinglong Observatory 0.6 m telescope. Three-bands (B, V and R) of photometric data points were obtai ned on 2004 October 6, 0.025-0.329 days after the burst. These very early multi band light curves imply the existence of a color dependent plateau phase. The B-band light curve shows a clear plateau at around 0.03 days after the burst. The R band light curve shows the hint of a plateau, or a possible slope change, at around 0.1 days after the burst. The overall behavior of these multi-band light curves may be interpreted in terms of the sum of two separate components, one showing a monotonic decay the other exhibiting a rising and a falling phase, as described by the standard afterglow model.
123 - D.M. Wei , T. Yan , Y.Z. Fan 2005
GRB050904 is very interesting since it is by far the most distant GRB event known to date($z=6.29$). It was reported that during the prompt high energy emission phase, a very bright optical flare was detected, and it was temporal coincident with an X -ray flare. Here we use two models to explain the optical flare, One is the late internal shock model, in which the optical flare is produced by the synchrotron radiation of the electrons accelerated by the late internal shock, and the X-ray flare is produced by the synchrotron-self-Compton mechanism. The other is the external forward-reverse shock model, in which the optical flare is from the reverse shock emission and the X-ray flare is attributed to the central engine activity. We show that with proper parameters, a bright optical flare can appear in both models. We think the late internal shock model is more favored since in this model the optical flash and the X-ray flare have the same origin, which provides a natural explanation of the temporal coincidence of them. In the forward-reverse shock scenario, fits to the optical flare and the late afterglow suggests that the physical parameters of the reverse shock are much different from that of forward shock, as found in modeling the optical flash of GRB 990123 previously.
413 - S. Klose , J. Greiner , A. Rau 2004
We report results from a comprehensive follow-up observing campaign of the afterglow of GRB 030226, including VLT spectroscopy, VLT polarimetry, and Chandra X-ray observations. In addition, we present BOOTES-1 wide-field observations at the time of t he occurrence of the burst. First observations at ESO started 0.2 days after the event when the GRB afterglow was at a magnitude of R~19 and continued until the afterglow had faded below the detection threshold (R>26). No underlying host galaxy was found. The optical light curve shows a break around 0.8 days after the burst, which is achromatic within the observational errors, supporting the view that it was due to a jetted explosion. Close to the break time the degree of linear polarization of the afterglow light was less than 1.1%, which favors a uniform jet model rather than a structured one. VLT spectra show two absorption line systems at redshifts z=1.962+/-0.001 and at z=1.986+/-0.001, placing the lower limit for the redshift of the GRB close to 2. We emphasize that the kinematics and the composition of the absorbing clouds responsible for these line systems is very similar to those observed in the afterglow of GRB 021004. This corroborates the picture in which at least some GRBs are physically related to the explosion of a Wolf-Rayet star.
Gamma-ray bursts (GRBSs) are produced by rare types of massive stellar explosions. Their rapidly fading afterglows are often bright enough at optical wavelengths, that they are detectable up to cosmological distances. Hirtheto, the highest known reds hift for a GRB was z=6.7, for GRB 080913, and for a galaxy was z=6.96. Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift z=8.1^{+0.1}_{-0.3}. This burst happened when the Universe was only ~4% of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600 million years after the Big Bang are not markedly different from those producing GRBs ~10 billion years later.
GRB 050730 is a long duration high-redshift burst (z=3.967) discovered by Swift. The afterglow shows variability and is well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 05073 0 including observations from the millimeter to X-rays. We use multi-wavelength afterglow data to understand the temporal and spectral decay properties with superimposed variability of this high redshift burst. Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r, R, i, I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 hours post-burst in the K, J, I, R, V and B bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies. The early afterglow shows variability at early times and shows a steepening at ~0.1 days (8.6 ks) in the B, V, r, R, i, I, J and K passbands. The early afterglow light curve decayed with alpha_1 = -0.60+/-0.07 and alpha_2 = -1.71+/-0.06 based on R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw alpha_x = -2.5+/-0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 hours after the burst. An electron energy index, p, of ~ 2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and indicates that the synchrotron cooling frequency nu_c is above observed frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا