ﻻ يوجد ملخص باللغة العربية
We are using computer models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of biosignatures, in the globally averaged spectra and light-curves of the Earth. Using AIRS (Atmospheric Infrared Sounder) data, as input for atmospheric and surface properties, we have generated spatially resolved high-resolution synthetic spectra using the SMART radiative transfer model, for a variety of conditions, from the UV to the far-IR (beyond the range of current Earth-based satellite data). We have then averaged over the visible disk for a number of different viewing geometries to quantify the sensitivity to surface types and atmospheric features as a function of viewing geometry, and spatial and spectral resolution. These results have been processed with an instrument simulator to improve our understanding of the detectable characteristics of Earth-like planets as viewed by the first generation extrasolar terrestrial planet detection and characterization missions (Terrestrial Planet Finder/Darwin and Life finder). The wavelength range of our results are modelled over are applicable to both the proposed visible coronograph and mid-infrared interferometer TPF architectures. We have validated this model against disk-averaged observations by the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). This model was also used to analyze Earth-shine data for detectability of planetary characteristics and biosignatures in disk-averaged spectra.
The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-avera
We analyse the detectability of vegetation on a global scale on Earths surface. Considering its specific reflectance spectrum showing a sharp edge around 700 nm, vegetation can be considered as a potential global biomarker. This work, based on observ
The increasing number of transiting exoplanets sparked a significant interest in discovering their moons. Most of the methods in the literature utilize timing analysis of the raw light curves. Here we propose a new approach for the direct detection o
We have investigated mid-infrared spectra of Earth obtained by the Atmospheric Infrared Sounder (AIRS) instrument on-board the AQUA spacecraft to explore the characteristics that may someday be observed in extrasolar terrestrial planets. We have used
Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae, they do produce transients that will be observed by upcoming ground-based su