ترغب بنشر مسار تعليمي؟ اضغط هنا

Signals of exomoons in averaged light curves of exoplanets

115   0   0.0 ( 0 )
 نشر من قبل Attila Simon
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing number of transiting exoplanets sparked a significant interest in discovering their moons. Most of the methods in the literature utilize timing analysis of the raw light curves. Here we propose a new approach for the direct detection of a moon in the transit light curves via the so called Scatter Peak. The essence of the method is the valuation of the local scatter in the folded light curves of many transits. We test the ability of this method with different simulations: Kepler short cadence, Kepler long cadence, ground-based millimagnitude photometry with 3-min cadence, and the expected data quality of the planned ESA mission of PLATO. The method requires ~100 transit observations, therefore applicable for moons of 10-20 day period planets, assuming 3-4-5 year long observing campaigns with space observatories. The success rate for finding a 1 R_Earth moon around a 1 R_Jupiter exoplanet turned out to be quite promising even for the simulated ground-based observations, while the detection limit of the expected PLATO data is around 0.4 R_Earth. We give practical suggestions for observations and data reduction to improve the chance of such a detection: (i) transit observations must include out-of-transit phases before and after a transit, spanning at least the same duration as the transit itself; (ii) any trend filtering must be done in such a way that the preceding and following out-of-transit phases remain unaffected.



قيم البحث

اقرأ أيضاً

Many moons have been detected around planets in our Solar System, but none has been detected unambiguously around any of the confirmed extrasolar planets. We test the feasibility of a supervised convolutional neural network to classify photometric tr ansit light curves of planet-host stars and identify exomoon transits, while avoiding false positives caused by stellar variability or instrumental noise. Convolutional neural networks are known to have contributed to improving the accuracy of classification tasks. The network optimization is typically performed without studying the effect of noise on the training process. Here we design and optimize a 1D convolutional neural network to classify photometric transit light curves. We regularize the network by the total variation loss in order to remove unwanted variations in the data features. Using numerical experiments, we demonstrate the benefits of our network, which produces results comparable to or better than the standard network solutions. Most importantly, our network clearly outperforms a classical method used in exoplanet science to identify moon-like signals. Thus the proposed network is a promising approach for analyzing real transit light curves in the future.
Recently, Teachey, Kipping, and Schmitt (2018) reported the detection of a candidate exomoon, tentatively designated Kepler-1625b I, around a giant planet in the Kepler field. The candidate exomoon would be about the size and mass of Neptune, conside rably larger than any moon in our Solar System, and if confirmed, would be the first in a new class of giant moons or binary planets. Motivated by the large mass ratio in the Kepler-1625b planet and satellite system, we investigate the detectability of similarly massive exomoons around directly imaged exoplanets via Doppler spectroscopy. The candidate moon around Kepler-1625b would induce a radial velocity signal of about 200 m/s on its host planet, large enough that similar moons around directly imaged planets orbiting bright, nearby stars might be detected with current or next generation instrumentation. In addition to searching for exomoons, a radial velocity survey of directly imaged planets could reveal the orientations of the planets spin axes, making it possible to identify Uranus analogs.
The number of known transiting exoplanets is rapidly increasing, which has recently inspired significant interest as to whether they can host a detectable moon. Although there has been no such example where the presence of a satellite was proven, sev eral methods have already been investigated for such a detection in the future. All these methods utilize post-processing of the measured light curves, and the presence of the moon is decided by the distribution of a timing parameter. Here we propose a method for the detection of the moon directly in the raw transit light curves. When the moon is in transit, it puts its own fingerprint on the intensity variation. In realistic cases, this distortion is too little to be detected in the individual light curves, and must be amplified. Averaging the folded light curve of several transits helps decrease the scatter, but it is not the best approach because it also reduces the signal. The relative position of the moon varies from transit to transit, the moons wing will appear in different positions on different sides of the planets transit. Here we show that a careful analysis of the scatter curve of the folded light curves enhances the chance of detecting the exomoons directly.
143 - H.J. Deeg , M. Seidel (1 2012
Reliable estimations of ephemeris errors are fundamental for the follow-up of CoRoT candidates. An equation for the precision of minimum times, originally developed for eclipsing binaries, has been optimized for CoRoT photometry and been used to calc ulate such errors. It may indicate expected timing precisions for transit events from CoRoT, as well as from Kepler. Prediction errors for transit events may also be used to calculate probabilities about observing entire or partial transits in any given span of observational coverage, leading to an improved reliability in deductions made from follow-up observations.
127 - James Green , Scott Boardsen , 2020
Characterizing habitable exoplanets and/or their moons is of paramount importance. Here we show the results of our magnetic field topological modeling which demonstrate that terrestrial exoplanet-exomoon coupled magnetospheres work together to protec t the early atmospheres of both the exoplanet and the exomoon. When exomoon magnetospheres are within the exoplanets magnetospheric cavity, the exomoon magnetosphere acts like a protective magnetic bubble providing an additional magnetopause confronting the stellar winds when the moon is on the dayside. In addition, magnetic reconnection would create a critical pathway for the atmosphere exchange between the early exoplanet and exomoon. When the exomoons magnetosphere is outside of the exoplanets magnetosphere it then becomes the first line of defense against strong stellar winds, reducing the exoplanets atmospheric loss to space. A brief discussion is given on how this type of exomoon would modify radio emissions from magnetized exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا