ترغب بنشر مسار تعليمي؟ اضغط هنا

A Circular Planetary Nebula around the OH/IR Star OH 354.88-0.54 (V1018 Sco)

34   0   0.0 ( 0 )
 نشر من قبل Quentin Parker
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martin Cohen




اسأل ChatGPT حول البحث

New deep, high-resolution H-alpha imagery from the UK Schmidt Telescope (UKST) Units H-alpha survey of the Southern Galactic Plane reveals the presence of a faint, highly circular, planetary nebula surrounding a very long period variable star (now known as V1018 Sco), first discovered as a 1612-MHz OH maser, OH 354.88-0.54. The nebular phase-lag distance, diameter, and radial velocity are 3.2kpc, 0.3pc, and 13km/s, respectively. Combining the maser attributes with near-, mid-, and far-infrared data and with our optical spectrum of the ring we conclude that the object was an intermediate mass AGB star (initial stellar mass >4Msun in which the fast wind has recently turned on, ionizing previously shed circumstellar material. Hence, we speculate that we may be witnessing a hitherto unobserved phase of PN evolution, in which a PN has only recently started to form around a star that is unequivocally still in its AGB


قيم البحث

اقرأ أيضاً

33 - Martin Cohen 2006
We present radio observations of the unique, recently formed, planetary nebula (PN) associated with a very long-period OH/IR variable star V1018 Sco that is unequivocally still in its asymptoticgiant branch phase. Two regions within the optical nebul a are clearly detected in nonthermal radio continuum emission, with radio spectral indices comparable to those seen in colliding-wind Wolf-Rayet binaries. We suggest that these represent shocked interactions between the hot, fast stellar wind and the cold nebular shell that represents the PNs slow wind moving away from the central star. This same interface produces both synchrotron radio continuum and the optical PN emission. The fast wind is neither spherical in geometry nor aligned withany obvious optical or radio axis. We also report the detection of transient H2O maser emission in this nebula.
We report on OH maser emission toward G336.644-0.695 (IRAS 16333-4807), which is a H2O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667 and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array (ATCA), hereby c onfirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3-35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are at a similar velocity to the 22 GHz H2O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km/s). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ~2 to ~10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation of the PN.
204 - I. Aleman , T. Ueta , D. Ladjal 2014
We report the first detections of OH$^+$ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672$mu$m to look for new detections. OH$^+$ rotational emission lines at 152.99, 290.20, 308.48, and 329.77$mu$m were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2$times$10$^{10}$ to 4 $times$10$^{11}$ cm$^{-2}$, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (T$_{eff}$ > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for ultraluminous galaxies.
Jets and outflows are ubiquitous phenomena in astrophysics, found in our Galaxy in diverse environments, from the formation of stars to late-type stellar objects. We present observations conducted with the 305m Arecibo Telescope of the pre-planetary nebula CRL 618 (Westbrook Nebula) - a well studied late-type star that has developed bipolar jets. The observations resulted in the first detection of 4765 MHz OH in a late-type stellar object. The line was narrow (FWHM ~ 0.6 km/s) and ~40 km/s blueshifted with respect to the systemic velocity, which suggests association with the expanding jets/bullets in CRL 618. We also report non-detection at Arecibo of any other OH transition between 1 and 9 GHz. The non-detections were obtained during the observations in 2008, when the 4765 MHz OH line was first discovered, and also in 2015 when the 4765 MHz OH line was not detected. Our data indicate that the 4765 MHz OH line was a variable maser. Modeling of the 4765 MHz OH detection and non-detection of the other transitions is consistent with the physical conditions expected in CRL 618. The 4765 MHz OH maser could originate from dissociation of H2O by shocks after sublimation of icy objects in this dying carbon-rich stellar system, although other alternatives such as OH in an oxygen-rich circumstellar region associated with a binary companion are also possible.
63 - D. Riechers 2004
We present near-infrared speckle interferometry of the OH/IR star OH 104.9+2.4 in the K band obtained with the 6m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of lambda = 2.12 micron the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. The visibility function shows that the stellar contribution to the total flux at lambda = 2.12 micron is less than ~50%, indicating a rather large optical depth of the CDS. The azimuthally averaged 1-dimensional Gaussian visibility fit yields a diameter of 47 +/- 3mas (FHWM), which corresponds to 112 +/- 13 AU for an adopted distance of D = 2.38 +/- 0.24 kpc. To determine the structure and the properties of the CDS of OH 104.9+2.4, radiative transfer calculations using the code DUSTY were performed to simultaneously model its visibility and the spectral energy distribution (SED). We found that both the ISO spectrum and the visibility of OH 104.9+2.4 can be well reproduced by a radiative transfer model with an effective temperature T_eff = 2500 +/- 500 K of the central source, a dust temperature T_in = 1000 +/- 200 K at the inner shell boundary R_in = 9.1 R_star = 25.4 AU, an optical depth tau = 6.5 +/- 0.3 at 2.2 micron, and dust grain radii ranging from a_min = 0.005 +/- 0.003 micron to a_max = 0.2 +/- 0.02 micron with a power law with index -3.5. It was found that even minor changes in a_max have a major impact on both the slope and the curvature of the visibility function, while the SED shows only minor changes. Our detailed analysis demonstrates the potential of dust shell modeling constrained by both the SED and visibilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا