ﻻ يوجد ملخص باللغة العربية
Jets and outflows are ubiquitous phenomena in astrophysics, found in our Galaxy in diverse environments, from the formation of stars to late-type stellar objects. We present observations conducted with the 305m Arecibo Telescope of the pre-planetary nebula CRL 618 (Westbrook Nebula) - a well studied late-type star that has developed bipolar jets. The observations resulted in the first detection of 4765 MHz OH in a late-type stellar object. The line was narrow (FWHM ~ 0.6 km/s) and ~40 km/s blueshifted with respect to the systemic velocity, which suggests association with the expanding jets/bullets in CRL 618. We also report non-detection at Arecibo of any other OH transition between 1 and 9 GHz. The non-detections were obtained during the observations in 2008, when the 4765 MHz OH line was first discovered, and also in 2015 when the 4765 MHz OH line was not detected. Our data indicate that the 4765 MHz OH line was a variable maser. Modeling of the 4765 MHz OH detection and non-detection of the other transitions is consistent with the physical conditions expected in CRL 618. The 4765 MHz OH maser could originate from dissociation of H2O by shocks after sublimation of icy objects in this dying carbon-rich stellar system, although other alternatives such as OH in an oxygen-rich circumstellar region associated with a binary companion are also possible.
We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many pr
We propose an asymmetrical jet ejection mechanism in order to model the mirror symmetry observed in the lobe distribution of some protoplanetary nebulae (pPNe), such as the pPN CRL 618. 3D hydrodynamical simulations of a precessing jet launched from
We present interferometric, full-polarization observations of the four ground-state transitions of OH, toward five confirmed and one candidate OH-emitting planetary nebulae (OHPNe). OHPNe are believed to be very young PNe, and information on their ma
We report on OH maser emission toward G336.644-0.695 (IRAS 16333-4807), which is a H2O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667 and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array (ATCA), hereby c
We report on the results of a Submillimeter Array interferometric observation of the proto-planetary nebula CRL 618 in the 12CO J=6-5 line. With the new capability of SMA enabling us to use two receivers at a time, we also observed simultaneously in