ﻻ يوجد ملخص باللغة العربية
We investigate cosmic-ray antiprotons emitted from the galactic primordial black holes in the Randall-Sundrum type-2 braneworld. The recent results of the BESS antiproton observation implies the existence of exotic primary sub-GeV antiprotons, one of whose most probable origin is PBHs in Our Galaxy. We show that the magnitude of antiproton flux from PBHs in the RS braneworld is proportional to negative power of the AdS radius, and immediately find that a large extra-dimension can relax upper-limits on the abundance of the Galactic PBHs. If actually there are more PBHs than the known upper-limit obtained in the pure 4D case, they set a lower bound on the size of the extra dimension above at least 10^{20} times 4D Planck-length to avoid inconsistency. On completion of the numerical studies, we show that these constraints on the AdS radius is comparable to those obtained from the diffuse photon background by some of the authors in the previous paper. Moreover, in the low accretion-rate case, only antiprotons can constrain the braneworld. We show that we will detect signatures of the braneworld as a difference between the flux of the antiprotons predicted in 4D and 5D by future observations in sub-GeV region with a few percent precision.
The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* approx 5 times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic
The mass spectrum of the primordial black holes formed by density perturbation in the radiation-dominated era of the Randall-Sundrum type-2 cosmology is given. The spectrum coincides with standard four-dimensional one on large scales but the deviatio
Primordial black holes (PBHs) are of fundamental interest in cosmology and astrophysics, and have received much attention as a dark matter candidate and as a potential source of gravitational waves. One possible PBH formation mechanism is the gravita
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia
A universal mechanism may be responsible for several unresolved cosmic conundra. The sudden drop in the pressure of relativistic matter at $W^{pm}/Z^{0}$ decoupling, the quark--hadron transition and $e^{+}e^{-}$ annihilation enhances the probability