ﻻ يوجد ملخص باللغة العربية
The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* approx 5 times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic gamma-ray backgrounds. However, while the dominant contribution to the extragalactic background comes from the time-integrated emission of PBHs with initial mass M_*, the Galactic background is dominated by the instantaneous emission of those with initial mass slightly larger than M_* and current mass below M_*. Also, the instantaneous emission of PBHs smaller than 0.4 M_* mostly comprises secondary particles produced by the decay of directly emitted quark and gluon jets. These points were missed in the earlier analysis by Lehoucq et al. using EGRET data. For a monochromatic PBH mass function, with initial mass (1+mu) M_* and mu << 1, the current mass is (3mu)^{1/3} M_* and the Galactic background constrains the fraction of the Universe going into PBHs as a function of mu. However, the initial mass function cannot be precisely monochromatic and even a tiny spread of mass around M_* would generate a current low-mass tail of PBHs below M_*. This tail would be the main contributor to the Galactic background, so we consider its form and the associated constraints for a variety of scenarios with both extended and nearly-monochromatic initial mass functions. In particular, we consider a scenario in which the PBHs form from critical collapse and have a mass function which peaks well above M_*. In this case, the largest PBHs could provide the dark matter without the M_* ones exceeding the gamma-ray background limits.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation,
Baryonic gas falling onto a primordial black hole (PBH) emits photons via the free-free process. These photons can contribute the diffuse free-free background radiation in the frequency range of the cosmic microwave background radiation (CMB). We sho
Primordial black holes (PBHs) are of fundamental interest in cosmology and astrophysics, and have received much attention as a dark matter candidate and as a potential source of gravitational waves. One possible PBH formation mechanism is the gravita
If primordial black holes (PBHs) form directly from inhomogeneities in the early Universe, then the number in the mass range $10^5 -10^{12}M_{odot}$ is severely constrained by upper limits to the $mu$ distortion in the cosmic microwave background (CM
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia