ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Luminosity Functions of Old and Intermediate-Age Globular Clusters in NGC 1316: Evidence for Dynamical Evolution of Second-Generation Globular Clusters

111   0   0.0 ( 0 )
 نشر من قبل Paul Goudfrooij
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Goudfrooij




اسأل ChatGPT حول البحث

The Advanced Camera for Surveys on board the Hubble Space Telescope has been used to obtain deep high-resolution images of the giant early-type galaxy NGC 1316 which is an obvious merger remnant. These observations supersede previous, shallower observations which revealed the presence of a population of metal-rich globular clusters of intermediate age (~ 3 Gyr). We detect a total of 1496 cluster candidates, almost 4 times as many as from the previous WFPC2 images. We confirm the bimodality of the color distribution of clusters, even in V-I, with peak colors 0.93 and 1.06. The large number of detected clusters allows us to evaluate the globular cluster luminosity functions as a function of galactocentric radius. We find that the luminosity function of the inner 50% of the intermediate-age, metal-rich (`red) population of clusters differs markedly from that of the outer 50%. In particular, the luminosity function of the inner 50% of the red clusters shows a clear flattening consistent with a turnover that is about 1.0 mag fainter than the turnover of the blue clusters. This constitutes the first direct evidence that metal-rich cluster populations formed during major mergers of gas-rich galaxies can evolve dynamically (through disruption processes) into the red, metal-rich cluster populations that are ubiquitous in `normal giant ellipticals.



قيم البحث

اقرأ أيضاً

54 - Paul Goudfrooij 2007
(ABRIDGED) The ACS camera on board the Hubble Space Telescope has been used to obtain deep images of the giant elliptical galaxy NGC 3610, a well-established dissipative galaxy merger remnant. These observations supersede previous WFPC2 images which revealed the presence of a population of metal-rich globular clusters (GCs) of intermediate age (~1.5-4 Gyr). We detect a total of 580 GC candidates, 46% more than from the previous WFPC2 images. The new photometry strengthens the significance of the previously found bimodality of the color distribution of GCs. Peak colors in V-I are 0.93 +/-0.01 and 1.09 +/- 0.01 for the blue and red subpopulations, respectively. The luminosity function (LF) of the inner 50% of the metal-rich (`red) population of GCs differs markedly from that of the outer 50%. In particular, the LF of the inner 50% of the red GCs shows a flattening consistent with a turnover that is about 1.0 mag fainter than the turnover of the blue GC LF. This is consistent with predictions of recent models of GC disruption for the age range mentioned above and for metallicities that are consistent with the peak color of the red GCs as predicted by population synthesis models. We determine the specific frequency of GCs in NGC 3610 and find a present-day value of S_N = 1.4 +/- 0.6. We estimate that this value will increase to S_N = 3.8 +/- 1.7 at an age of 10 Gyr, which is consistent with typical S_N values for `normal ellipticals. Our findings constitute further evidence in support of the notion that metal-rich GC populations formed during major mergers involving gas-rich galaxies can evolve dynamically (through disruption processes) into the red, metal-rich GC populations that are ubiquitous in `normal giant ellipticals.
The giant elliptical galaxy NGC 1316 is the brightest galaxy in the Fornax cluster, and displays a number of morphological features that might be interpreted as an intermediate age merger remanent ($sim$3 Gyr). Based on the idea that globular cluster s systems (GCS) constitute genuine tracers of the formation and evolution of their host galaxies, we conducted a spectroscopic study of approximately 40 globular clusters (GCs) candidates associated with this interesting galaxy. We determined ages, metallicities, and $alpha$-element abundances for each GC present in the sample, through the measurement of different Lick indices and their subsequent comparison with simple stellar populations models (SSPs).
68 - S. S. Larsen 2002
We present spectroscopy for globular clusters (GCs) in the elliptical galaxy NGC 4365, obtained with the LRIS spectrograph on the Keck I telescope. Previous studies have shown that the optical color distribution of GCs in NGC 4365 lacks the bimodal s tructure that is common in globular cluster systems, showing only a single broad peak. Measurements of Balmer line indices (Hbeta, Hgamma and Hdelta) on the GC spectra support recent suggestions by Puzia et al., based on optical and near-infrared photometry, that some of the clusters in NGC 4365 are intermediate-age (2-5 Gyrs) and metal-rich (-0.4<[Z/H]<0) rather than old (~10-15 Gyrs) and metal-poor. We also find some genuinely metal-poor, old clusters, suggesting that the ages and metallicities of the two populations conspire to produce the single broad distribution observed in optical colors.
We present the first results from the analysis of GIRAFFE spectra of more than 1200 red giants stars in 19 Galactic Globular Clusters (GCs), to study the chemical composition of second generation stars and their link with global cluster parameters. W e confirm that the extension of the Na-O anticorrelation (the most striking signature of polluted, second generation populations) is strictly related to the very blue (and hot) extreme of the Horizontal Branch (HB). Long anticorrelations seem to require large mass and large-sized, eccentric orbits, taking the GCs far away from the central regions of the Galaxy. We can separate three populations in each cluster (primordial, intermediate and extreme) based on the chemical composition. In all GCs we observe a population of primordial composition, similar to field stars of similar metallicity. We find that in all GCs the bulk (from 50 to 70%) of stars belong to the intermediate component. Finally, the extreme, very oxygen-poor component is observed preferentially in massive clusters, but is not present in all massive GCs.
75 - F. Calura 2019
By means of grid-based, 3D hydrodynamical simulations we study the formation of second generation (SG) stars in a young globular cluster (GC) of mass 10^7 Msun, the possible progenitor of an old GC with a present mass ~(1-5) * 10^6 Msun. The cluster accretes external gas as its first generation (FG) asymptotic giant branch (AGB) stars release their ejecta and SG stars form. We consider two models characterised by different densities of the external gas. In both cases, we find that a very compact SG subsystem with central density >10^5M sun/pc^3 forms in the innermost regions of the cluster. The low-density model forms a population of extreme SG stars with high helium enhancement, followed by the formation of another SG group out of a mix of pristine gas and AGB ejecta and characterised by a modest helium enhancement. On the other hand, the high-density model forms in prevalence SG stars with modest helium enhancement. Our simulations illustrate the dynamical processes governing the formation of SG populations in GCs and shed light on the structural properties emerging at the end of this phase. The newly born SG groups have different concentrations, with more extreme SG stars more centrally concentrated than those with less extreme chemical abundances. The very high density of the SG subsystems implies that SG massive stars, if formed, might suffer frequent close encounters, collisions and gas stripping, thus possibly contributing further gas to the SG formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا