ﻻ يوجد ملخص باللغة العربية
We present the first results from the analysis of GIRAFFE spectra of more than 1200 red giants stars in 19 Galactic Globular Clusters (GCs), to study the chemical composition of second generation stars and their link with global cluster parameters. We confirm that the extension of the Na-O anticorrelation (the most striking signature of polluted, second generation populations) is strictly related to the very blue (and hot) extreme of the Horizontal Branch (HB). Long anticorrelations seem to require large mass and large-sized, eccentric orbits, taking the GCs far away from the central regions of the Galaxy. We can separate three populations in each cluster (primordial, intermediate and extreme) based on the chemical composition. In all GCs we observe a population of primordial composition, similar to field stars of similar metallicity. We find that in all GCs the bulk (from 50 to 70%) of stars belong to the intermediate component. Finally, the extreme, very oxygen-poor component is observed preferentially in massive clusters, but is not present in all massive GCs.
By means of grid-based, 3D hydrodynamical simulations we study the formation of second generation (SG) stars in a young globular cluster (GC) of mass 10^7 Msun, the possible progenitor of an old GC with a present mass ~(1-5) * 10^6 Msun. The cluster
(abridged) Recent spectroscopic and photometric observations show the existence of various generations of stars in GCs, differing in the abundances of products of H-burning at high temperatures (the main final product being He). It is important to st
Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generati
The Advanced Camera for Surveys on board the Hubble Space Telescope has been used to obtain deep high-resolution images of the giant early-type galaxy NGC 1316 which is an obvious merger remnant. These observations supersede previous, shallower obser
By means of 3D hydrodynamic simulations, we study how Type Ia supernovae (SNe) explosions affect the star formation history and the chemical properties of second generation (SG) stars in globular clusters (GC). SG stars are assumed to form once first