ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of second generation stars in Globular Clusters

277   0   0.0 ( 0 )
 نشر من قبل Angela Bragaglia
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results from the analysis of GIRAFFE spectra of more than 1200 red giants stars in 19 Galactic Globular Clusters (GCs), to study the chemical composition of second generation stars and their link with global cluster parameters. We confirm that the extension of the Na-O anticorrelation (the most striking signature of polluted, second generation populations) is strictly related to the very blue (and hot) extreme of the Horizontal Branch (HB). Long anticorrelations seem to require large mass and large-sized, eccentric orbits, taking the GCs far away from the central regions of the Galaxy. We can separate three populations in each cluster (primordial, intermediate and extreme) based on the chemical composition. In all GCs we observe a population of primordial composition, similar to field stars of similar metallicity. We find that in all GCs the bulk (from 50 to 70%) of stars belong to the intermediate component. Finally, the extreme, very oxygen-poor component is observed preferentially in massive clusters, but is not present in all massive GCs.

قيم البحث

اقرأ أيضاً

75 - F. Calura 2019
By means of grid-based, 3D hydrodynamical simulations we study the formation of second generation (SG) stars in a young globular cluster (GC) of mass 10^7 Msun, the possible progenitor of an old GC with a present mass ~(1-5) * 10^6 Msun. The cluster accretes external gas as its first generation (FG) asymptotic giant branch (AGB) stars release their ejecta and SG stars form. We consider two models characterised by different densities of the external gas. In both cases, we find that a very compact SG subsystem with central density >10^5M sun/pc^3 forms in the innermost regions of the cluster. The low-density model forms a population of extreme SG stars with high helium enhancement, followed by the formation of another SG group out of a mix of pristine gas and AGB ejecta and characterised by a modest helium enhancement. On the other hand, the high-density model forms in prevalence SG stars with modest helium enhancement. Our simulations illustrate the dynamical processes governing the formation of SG populations in GCs and shed light on the structural properties emerging at the end of this phase. The newly born SG groups have different concentrations, with more extreme SG stars more centrally concentrated than those with less extreme chemical abundances. The very high density of the SG subsystems implies that SG massive stars, if formed, might suffer frequent close encounters, collisions and gas stripping, thus possibly contributing further gas to the SG formation.
125 - Angela Bragaglia 2010
(abridged) Recent spectroscopic and photometric observations show the existence of various generations of stars in GCs, differing in the abundances of products of H-burning at high temperatures (the main final product being He). It is important to st udy the connections between stars properties and He content. We consider here the about 1400 stars on the Red Giant Branch (RGB) observed with FLAMES@VLT in 19 Galactic GCs, part of out Na-O anticorrelation projet. Stars with different He are expected to have different temperatures (i.e. colours), slightly different [Fe/H], and different luminosity levels of the RGB bump. All these differences are small, but our study has the necessary precision, good statistics, and homogeneity to detect them. We also computed suitable sets of stellar models (BaSTI) for various assumptions about the initial helium content. Differences in observable quantities that can be attributed to variations in He content are generally detectable between stars of the Primordial (P, first-generation) and Extreme (E, second-generation) populations, but not between the Primordial and Intermediate ones (I). The only exception (differences are significant also between P and I populations) is NGC2808, where three populations are clearly separated also on the Main Sequence and the Horizontal Branch. The average enhancement in the He mass fraction Y between P and E stars is about 0.05-0.11, depending on the assumptions. The differences in Y, for NGC2808 alone, are about 0.11-0.14 between P and I stars, and about 0.15-0.19 between P and E stars, again depending on the assumptions. The RGB bump luminosity of first and second-generation stars has different levels; the implied Y difference is more difficult to quantify, but is in agreement with the other determinations.
Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generati ons are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M 13, M 5, M 3, and M 2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the APOGEE survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and and SG stars during the He-burning stages based on these standard stellar models.
110 - Paul Goudfrooij 2004
The Advanced Camera for Surveys on board the Hubble Space Telescope has been used to obtain deep high-resolution images of the giant early-type galaxy NGC 1316 which is an obvious merger remnant. These observations supersede previous, shallower obser vations which revealed the presence of a population of metal-rich globular clusters of intermediate age (~ 3 Gyr). We detect a total of 1496 cluster candidates, almost 4 times as many as from the previous WFPC2 images. We confirm the bimodality of the color distribution of clusters, even in V-I, with peak colors 0.93 and 1.06. The large number of detected clusters allows us to evaluate the globular cluster luminosity functions as a function of galactocentric radius. We find that the luminosity function of the inner 50% of the intermediate-age, metal-rich (`red) population of clusters differs markedly from that of the outer 50%. In particular, the luminosity function of the inner 50% of the red clusters shows a clear flattening consistent with a turnover that is about 1.0 mag fainter than the turnover of the blue clusters. This constitutes the first direct evidence that metal-rich cluster populations formed during major mergers of gas-rich galaxies can evolve dynamically (through disruption processes) into the red, metal-rich cluster populations that are ubiquitous in `normal giant ellipticals.
By means of 3D hydrodynamic simulations, we study how Type Ia supernovae (SNe) explosions affect the star formation history and the chemical properties of second generation (SG) stars in globular clusters (GC). SG stars are assumed to form once first generation asymptotic giant branch (AGB) stars start releasing their ejecta; during this phase, external gas is accreted by the system and SNe Ia begin exploding, carving hot and tenuous bubbles. Given the large uncertainty on SNe Ia explosion times, we test two different values for the delay time. We run two different models for the external gas density: in the low-density scenario with short delay time, the explosions start at the beginning of the SG star formation, halting it in its earliest phases. The external gas hardly penetrates the system, therefore most SG stars present extreme helium abundances (Y > 0.33). The low-density model with delayed SN explosions has a more extended SG star formation epoch and includes SG stars with modest helium enrichment. On the contrary, the high-density model is weakly affected by SN explosions, with a final SG mass similar to the one obtained without SNe Ia. Most of the stars form from a mix of AGB ejecta and pristine gas and have a modest helium enrichment. We show that gas from SNe Ia may produce an iron spread of $sim 0.14$ dex, consistent with the spread found in about 20% of Galactic GCs, suggesting that SNe Ia might have played a key role in the formation of this sub-sample of GCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا