ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dense Molecular Cores in the IRAS 21391+5802 region

48   0   0.0 ( 0 )
 نشر من قبل Maria T. Beltran
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed kinematical study and modeling of the emission of the molecular cores at ambient velocities surrounding IRAS 21391+5802, an intermediate-mass protostar embedded in IC 1396N. The high-density gas emission is found in association with three dense cores associated with the YSOs BIMA 1, BIMA 2, and BIMA 3. The CS (5-4) and CH3OH (5-4) emission around BIMA 1 has been modeled by considering a spatially infinitely thin ring seen edge-on by the observer. From the model we find that CS is detected over a wider radii range than CH3OH. A bipolar outflow is detected in the CS (2-1) line centered near BIMA 1. This outflow could be powered by a yet undetected YSO, BIMA 1W, or alternatively could be part of the BIMA 1 molecular outflow. The CS and CH3OH emission associated with the intermediate-mass protostar BIMA 2 is highly perturbed by the bipolar outflow even at cloud velocities, confirming that the protostar is in a very active stage of mass loss. For YSO BIMA 3 the lack of outflow and of clear evidence of infall suggests that both outflow and infall are weaker than in BIMA 1, and that BIMA 3 is probably a more evolved object.



قيم البحث

اقرأ أيضاً

We present results of our study on eight dense cores, previously classified as starless, using infrared (3-160 {micron}) imaging observations with textit{AKARI} telescope and molecular line (HCN and N$_2$H$^+$) mapping observations with textit{KVN} t elescope. Combining our results with the archival IR to mm continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosity of $sim0.3-4.4$ L$_{odot}$. The other six cores are found to remain as starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3-6 K towards the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an over-dominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show coreshine effect due to the scattering of light by the micron-size dust grains. This may imply that the age of the cores is of the order of $sim10^{5}$ years, being consistent with the timescale required for the cores to evolve into an oscillatory stage due to the external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.
We present new ALMA Band 7 ($sim340$ GHz) observations of the dense gas tracers HCN, HCO$^+$, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120-5453. We find centrally enhanced HCN (4-3) emission, relative to HCO$^+$ (4-3) , but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of $sim1.2$ yr$^{-1}$, the high HCN/HCO$^+$ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high $Sigma_{IR}$ of $4.7times10^{12}$ $L_{odot}$ kpc$^{-2}$, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H$_2$O lines and find a nuclear dust temperature of $sim40$ K. IRAS 13120-5453 has a lower dust temperature and $Sigma_{IR}$ than is inferred for the systems termed compact obscured nuclei (such as Arp 220 and Mrk 231). If IRAS 13120-5453 has undergone a compact obscured nucleus phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/AGN core.
186 - G. Busquet 2010
The deuterium fractionation, Dfrac, has been proposed as an evolutionary indicator in pre-protostellar and protostellar cores of low-mass star-forming regions. We investigate Dfrac, with high angular resolution, in the cluster environment surrounding the UCHII region IRAS 20293+3952. We performed high angular resolution observations with the IRAM Plateau de Bure Interferometer (PdBI) of the ortho-NH2D 1_{11}-1_{01} line at 85.926 GHz and compared them with previously reported VLA NH3 data. We detected strong NH2D emission toward the pre-protostellar cores identified in NH3 and dust emission, all located in the vicinity of the UCHII region IRAS 20293+3952. We found high values of Dfrac~0.1-0.8 in all the pre-protostellar cores and low values, Dfrac<0.1, associated with young stellar objects. The high values of Dfrac in pre-protostellar cores could be indicative of evolution, although outflow interactions and UV radiation could also play a role.
70 - F. Massi 2019
Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size 19.2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 Msun. Results We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1--6 pc is also found, hinting at fractionation of magnetised, turbulent gas.
The molecular clouds Lupus 1, 3 and 4 were mapped with the Mopra telescope at 3 and 12 mm. Emission lines from high density molecular tracers were detected, i.e. NH$_3$ (1,1), NH$_3$ (2,2), N$_2$H$^+$ (1-0), HC$_3$N (3-2), HC$_3$N (10-9), CS (2-1), C H$_3$OH (2$_0-1_0$)A$^+$ and CH$_3$OH (2$_{-1}-1_{-1}$)E. Velocity gradients of more than 1 km s$^{-1}$ are present in Lupus 1 and 3 and multiple gas components are present in these clouds along some lines of sight. Lupus 1 is the cloud richest in high density cores, 8 cores were detected in it, 5 cores were detected in Lupus 3 and only 2 in Lupus 4. The intensity of the three species HC$_3$N, NH$_3$ and N$_2$H$^+$ changes significantly in the various cores: cores that are brighter in HC$_3$N are fainter or undetected in NH$_3$ and N$_2$H$^+$ and vice versa. We found that the column density ratios HC$_3$N/N$_2$H$^+$ and HC$_3$N/NH$_3$ change by one order of magnitude between the cores, indicating that also the chemical abundance of these species is different. The time dependent chemical code that we used to model our cores shows that the HC$_3$N/N$_2$H$^+$ and HC$_3$N/NH$_3$ ratios decrease with time therefore the observed column density of these species can be used as an indicator of the chemical evolution of dense cores. On this base we classified 5 out of 8 cores in Lupus 1 and 1 out of 5 cores in Lupus 3 as very young protostars or prestellar cores. Comparing the millimetre cores population with the population of the more evolved young stellar objects identified in the Spitzer surveys, we conclude that in Lupus 3 the bulk of the star formation activity has already passed and only a moderate number of stars are still forming. On the contrary, in Lupus 1 star formation is on-going and several dense cores are still in the pre--/proto--stellar phase. Lupus 4 is at an intermediate stage, with a smaller number of individual objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا