ﻻ يوجد ملخص باللغة العربية
We present results of our study on eight dense cores, previously classified as starless, using infrared (3-160 {micron}) imaging observations with textit{AKARI} telescope and molecular line (HCN and N$_2$H$^+$) mapping observations with textit{KVN} telescope. Combining our results with the archival IR to mm continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosity of $sim0.3-4.4$ L$_{odot}$. The other six cores are found to remain as starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3-6 K towards the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an over-dominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show coreshine effect due to the scattering of light by the micron-size dust grains. This may imply that the age of the cores is of the order of $sim10^{5}$ years, being consistent with the timescale required for the cores to evolve into an oscillatory stage due to the external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.
Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and t
The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what dr
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-ma
The molecular clouds Lupus 1, 3 and 4 were mapped with the Mopra telescope at 3 and 12 mm. Emission lines from high density molecular tracers were detected, i.e. NH$_3$ (1,1), NH$_3$ (2,2), N$_2$H$^+$ (1-0), HC$_3$N (3-2), HC$_3$N (10-9), CS (2-1), C
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear