ﻻ يوجد ملخص باللغة العربية
The air fluorescence technique is used to detect ultra-high energy cosmic rays (UHECR), and to estimate their energy. Of fundamental importance is the photon yield due to excitation by electrons, in air of various densities and temperatures. After our previous report, the experiment has been continued using a Sr90 $beta$ source to study the pressure dependence of photon yields for radiation in nitrogen and dry air. The photon yields in 15 wave bands between 300 nm and 430 nm have been determined. The total photon yield between 300 nm and 406 nm (used in most experiments) in air excited by a 0.85 MeV electron is 3.81+-0.13 (+-13 % systematics) photons per meter at 1013 hPa and 20 $^{circ}$C. The air density and temperature dependencies of 15 wave bands are given for application to UHECR observations.
The iron line at 6.4 keV provides a valuable spectral diagnostic in several fields of X-ray astronomy. It often results from the reprocessing of external X-rays by a neutral or low-ionized medium, but it can also be excited by impacts of low-energy c
In order to detect ultrahigh-energy cosmic rays (UHECR), atmospheric fluorescence light from the trajectory of the extensive air shower may be measured by mirror-photosensor systems. In this type of experiment the photon yield from electrons exciting
We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous bea
The energies of the most energetic extensive air showers observed at the Yakutsk array have been estimated with help of the all detectors readings instead of using of the standard procedure with a parameter s(600). The energy of the most energetic ex
An accurate knowledge of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or humidity is essential to obtain a reliable measurement of the primary energy of cosmic rays in experiments using the fluores