ﻻ يوجد ملخص باللغة العربية
In order to detect ultrahigh-energy cosmic rays (UHECR), atmospheric fluorescence light from the trajectory of the extensive air shower may be measured by mirror-photosensor systems. In this type of experiment the photon yield from electrons exciting air of various densities and temperatures is most fundamental information for estimating the primary energy of UHECR. An experiment has been undertaken using a Sr90 $beta$ source to study the pressure dependence of photon yields, and the life times of the excited states, for radiation in nitrogen and dry air. The photon yield between 300 nm and 406 nm in air excited by 0.85 MeV electrons is 3.73+-0.15 (+-14% systematic) photons per meter at 1000 hPa and 20 $^{circ}$C. The air density and temperature dependence is given for application to UHECR observations.
Quantum coherence in quantum optics is an essential part of optical information processing and light manipulation. Alkali metal vapors, despite the numerous shortcomings, are traditionally used in quantum optics as a working medium due to convenient
The air fluorescence technique is used to detect ultra-high energy cosmic rays (UHECR), and to estimate their energy. Of fundamental importance is the photon yield due to excitation by electrons, in air of various densities and temperatures. After ou
The MOLLER experiment proposed at the Thomas Jefferson National Accelerator Facility plans a precision low energy determination of the weak mixing angle via the measurement of the parity-violating asymmetry in the scattering of high energy longitudin
Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both intrinsic and extrinsic, especially for n-type materials. Intrinsic dynamic disorder stems from large thermal fluctuations both in intermo
The interaction of streamers in nitrogen-oxygen mixtures such as air is studied. First, an efficient method for fully three-dimensional streamer simulations in multiprocessor machines is introduced. With its help, we find two competing mechanisms how