ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal Enrichment and Energetics of Galactic Winds in Galaxy Clusters

82   0   0.0 ( 0 )
 نشر من قبل Wolfgang Kapferer
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Kapferer




اسأل ChatGPT حول البحث

We investigate efficiency and time dependence of metal enrichment processes in the Intra-Cluster Medium (ICM). In this presentation we concentrate on the effects of galactic winds. The mass loss rates due to galactic winds are calculated with a special algorithm, which takes into account cosmic rays and magnetic fields. This algorithm is embedded in a combined N-body/hydrodynamic code which calculates the dynamics and evolution of a cluster. We present mass loss rates depending on galaxy properties like type, mass, gas mass fraction and the surrounding ICM. In addition we show metallicity maps as they would be observed with X-ray telescopes.

قيم البحث

اقرأ أيضاً

We investigate the differential effects of metal cooling and galactic stellar winds on the cosmological formation of individual galaxies with three sets of cosmological, hydrodynamical zoom simulations of 45 halos in the mass range 10^11<M_halo<10^13 M_sun. Models including both galactic winds and metal cooling (i) suppress early star formation at z>1 and predict reasonable star formation histories, (ii) produce galaxies with high cold gas fractions (30-60 per cent) at high redshift, (iii) significantly reduce the galaxy formation efficiencies for halos (M_halo<10^12M_sun) at all redshifts in agreement with observational and abundance matching constraints, (iv) result in high-redshift galaxies with reduced circular velocities matching the observed Tully-Fisher relation at z~2, and (v) significantly increase the sizes of low-mass galaxies (M_stellar<3x10^10M_sun) at high redshift resulting in a weak size evolution - a trend in agreement with observations. However, the low redshift (z<0.5) star formation rates of massive galaxies are higher than observed (up to ten times). No tested model predicts the observed size evolution for low-mass and high-mass galaxies simultaneously. Due to the delayed onset of star formation in the wind models, the metal enrichment of gas and stars is delayed and agrees well with observational constraints. Metal cooling and stellar winds are both found to increase the ratio of in situ formed to accreted stars - the relative importance of dissipative vs. dissipationless assembly. For halo masses below ~10^12M_sun, this is mainly caused by less stellar accretion and compares well to predictions from semi-analytical models but still differs from abundance matching models. For higher masses, the fraction of in situ stars is over-predicted due to the unrealistically high star formation rates at low redshifts.
72 - W. Kapferer 2005
We present an investigation of the metal enrichment of the intra-cluster medium (ICM) by galactic winds and merger-driven starbursts. We use combined N-body/hydrodynamic simulations with a semi-numerical galaxy formation model. The mass loss by galac tic winds is obtained by calculating transonic solutions of steady state outflows, driven by thermal, cosmic ray and MHD wave pressure. The inhomogeneities in the metal distribution caused by these processes are an ideal tool to reveal the dynamical state of a galaxy cluster. We present surface brightness, X-ray emission weighted temperature and metal maps of our model clusters as they would be observed by X-ray telescopes like XMM-Newton. We show that X-ray weighted metal maps distinguish between pre- or post-merger galaxy clusters by comparing the metallicity distribution with the galaxy-density distribution: pre-mergers have a metallicity gap between the subclusters, post-mergers a high metallicity between subclusters. We apply our approach to two observed galaxy clusters, Abell 3528 and Abell 3921, to show whether they are pre- or post-merging systems. The survival time of the inhomogeneities in the metallicity distribution found in our simulations is up to several Gyr. We show that galactic winds and merger-driven starbursts enrich the ICM very efficiently after z=1 in the central (~ 3 Mpc radius) region of a galaxy cluster.
We assess the importance of AGN outflows with respect to the metal enrichment of the intracluster medium (ICM) in galaxy clusters. We use combined N-body and hydrodynamic simulations, along with a semi-numerical galaxy formation and evolution model. Using assumptions based on observations, we attribute outflows of metal-rich gas initiated by AGN activity to a certain fraction of our model galaxies. The gas is added to the model ICM, where the evolution of the metallicity distribution is calculated by the hydrodynamic simulations. For the parameters describing the AGN content of clusters and their outflow properties, we use the observationally most favorable values. We find that AGNs have the potential to contribute significantly to the metal content of the ICM or even explain the complete abundance, which is typically ~0.5 Z_sun in core regions. Furthermore, the metals end up being inhomogeneously distributed, in accordance with observations.
We investigate the efficiency and time-dependence of thermally and cosmic ray driven galactic winds for the metal enrichment of the intra-cluster medium (ICM) using a new analytical approximation for the mass outflow. The spatial distribution of the metals are studied using radial metallicity profiles and 2D metallicity maps of the model clusters as they would be observed by X-ray telescopes like XMM-Newton. Analytical approximations for the mass loss by galactic winds driven by thermal and cosmic ray pressure are derived from the Bernoulli equation and implemented in combined N-body/hydrodynamic cosmological simulations with a semi-analytical galaxy formation model. Observable quantities like the mean metallicity, metallicity profiles, and 2D metal maps of the model clusters are derived from the simulations. We find that galactic winds alone cannot account for the observed metallicity of the ICM. At redshift $z=0$ the model clusters have metallicities originating from galactic winds which are almost a factor of 10 lower than the observed values. For massive, relaxed clusters we find, as in previous studies, a central drop in the metallicity due to a suppression of the galactic winds by the pressure of the ambient ICM. Combining ram-pressure stripping and galactic winds we find radial metallicity profiles of the model clusters which agree qualitatively with observed profiles. Only in the inner parts of massive clusters the observed profiles are steeper than in the simulations. Also the combination of galactic winds and ram-pressure stripping yields too low values for the ICM metallicities. The slope of the redshift evolution of the mean metallicity in the simulations agrees reasonably well with recent observations.
159 - V. V. Pogosov , V. I. Reva 2017
We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters $c_{v}$ (relative concentration of vacanci es) and $R_{N,v}^{-1}$, $R_{N,v}$ being cluster radius. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance, dissociation, cohesion and monovacancy-formation energies of the small perfect clusters Na$_{N}$, Mg$_{N}$, Al$_{N}$ ($N leq 270$) and the clusters containing a monovacancy ($Ngeq 12$) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the bubble blowing scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters, the size dependences of their characteristics and asymptotics is discussed. It is shown that difference between the characteristics for the neutral and charged cluster is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا