ترغب بنشر مسار تعليمي؟ اضغط هنا

A possible radio supernova in the outer part of NGC 3310

39   0   0.0 ( 0 )
 نشر من قبل Megan Argo
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As part of an on-going radio supernova monitoring program, we have discovered a variable, compact steep spectrum radio source ~65 arcsec (~4 kpc) from the centre of the starburst galaxy NGC 3310. If the source is at the distance of NGC 3310, then its 5 GHz luminosity is ~3 x 10^{19} WHz^-1. The source luminosity, together with its variability characteristics, compact structure (<17 mas) and its association with a group of HII regions, leads us to propose that it is a previously uncatalogued type II radio supernova. A search of archival data also shows an associated X-ray source with a luminosity similar to known radio supernova.


قيم البحث

اقرأ أيضاً

91 - L. P. Jenkins 2004
We present XMM-Newton EPIC observations of the two nearby starburst merger galaxies NGC 3256 & NGC 3310. The broad-band (0.3-10 keV) integrated X-ray emission from both galaxies shows evidence of multi-phase thermal plasmas plus an underlying hard no n-thermal power-law continuum. NGC 3256 is well-fit with a model comprising two MEKAL components (kT=0.6/0.9 keV) plus a hard power-law (Gamma=2), while NGC 3310 has cooler MEKAL components (kT=0.3/0.6 keV) and a harder power-law tail (Gamma=1.8). Chandra observations of these galaxies both reveal the presence of numerous discrete sources embedded in the diffuse emission, which dominate the emission above ~2 keV and are likely to be the source of the power-law emission. The thermal components show a trend of increasing absorption with higher temperature, suggesting that the hottest plasmas arise from supernova-heated gas within the disks of the galaxies, while the cooler components arise from outflowing galactic winds interacting with the ambient interstellar medium (ISM). We find no strong evidence for an active galactic nucleus (AGN) in either galaxy.
We present new Space Telescope Imaging Spectrograph (STIS) observations of three spiral galaxies, NGC 4303, NGC 3310 and NGC 4258. The bright optical emission lines H$alpha$ $lambda$ $6564 AA$, [NII] $lambda$$lambda$ $6549,6585 AA$ and [SII] $lambda$ $lambda$ $ 6718,6732 AA$ were used to study the kinematics of the ionized gas in the nuclear region of each galaxy with a $sim 0.07arcsec$ spatial resolution. In NGC 3310, the observed gas kinematics is well matched by a circularly rotating disk model but we are only able to set an upper limit to the BH mass which, taking into account the allowed disk inclinations, varies in the range $5.0 times 10^{6} - 4.2 times 10^{7} M_{odot}$ at the 95% confidence level. In NGC 4303 the kinematical data require the presence of a BH with mass $M_{BH}=(5.0)^{+0.87}_{-2.26}times 10^{6}M_{odot}$ (for a disk inclination $i=70$ deg).In NGC 4258, the observed kinematics require the presence of a black hole with $M_{BH}= (7.9)^{+6.2}_{-3.5} times 10^{7}M_{odot}$ ($i=60$ deg). This result is in good agreement with the published value $(3.9 pm 0.1) times 10^{7} M_{odot}$, derived from $H_{2}O$-maser observations. Our attempt at measuring BH masses in these 3 late type Sbc spiral galaxies has shown that these measurements are very challenging and at the limit of the highest spatial resolution currently available. Nonetheless our estimates are in good agreement with the scaling relations between black holes and their host spheroids suggesting that (i) they are reliable and (ii) black holes in spiral galaxies follows the same scaling relations as those in more massive early-type galaxies. A crucial test for the gas kinematical method, the correct recovery of the known BH mass in NGC 4258, has been successful. [abridged]
We use integral field spectroscopy to study in detail the Wolf-Rayet (WR) population in NGC 3310, spatially resolving 18 star-forming knots with typical sizes of 200-300 pc in the disc of the galaxy hosting a substantial population of WRs. The detect ed emission in the so-called blue bump is attributed mainly to late-type nitrogen WRs (WNL), ranging from a few dozens to several hundreds of stars per region. Our estimated WNL/(WNL+O) ratio is comparable to reported empirical relations once the extinction-corrected emission is further corrected by the presence of dust grains inside the nebula that absorb a non-negligible fraction of UV photons. Comparisons of observables with stellar population models show disagreement by factors larger than 2-3. However, if the effects of interacting binaries and/or photon leakage are taken into account, observations and predictions tend to converge. We estimate the binary fraction of the hii regions hosting WRs to be significant in order to recover the observed X-ray flux, hence proving that the binary channel can be critical when predicting observables. We also explore the connection of the environment with the current hypothesis that WRs can be progenitors to long-duration gamma-ray bursts (GRBs). Galaxy interactions, which can trigger strong episodes of star formation in the central regions, may be a plausible environment where WRs may act as progenitors of GRBs. Finally, even though the chemical abundance is generally homogeneous, we also find weak evidence for rapid N pollution by WR stellar winds at scales of ~ 200 pc.
The main goal of this work is to a have a new neutral hydrogen HI supershell candidates catalog to analyze their spatial distribution in the Galaxy and to carry out a statistical study of their main properties.}{This catalog was carried out making us e of the Leiden-Argentine-Bonn (LAB) survey. The supershell candidates were identified using a combination of two techniques: a visual inspection plus an automatic searching algorithm. Our automatic algorithm is able to detect both closed and open structures. A total of 566 supershell candidates were identified. Most of them (347) are located in the second Galactic quadrant, while 219 were found in the third one. About $98 , %$ of a subset of 190 structures (used to derive the statistical properties of the supershell candidates) are elliptical with a mean weighted eccentricity of $0.8 pm 0.1$, and $sim 70 ,%$ have their major axes parallel to the Galactic plane. The weighted mean value of the effective radius of the structures is $sim$ 160 pc. Owing to the ability of our automatic algorithm to detect open structures, we have also identified some galactic chimney candidates. We find an asymmetry between the second and third Galactic quadrants in the sense that in the second one we detect structures as far as 32 kpc, while for the 3rd one the farthest structure is detected at 17 kpc. The supershell surface density in the solar neighborhood is $sim$ 8 kpc$^{-2}$, and decreases as we move farther away form the Galactic center. We have also compared our catalog with those by other authors.
Numerical simulations of minor mergers predict little enhancement in the global star formation activity. However, it is still unclear the impact they have on the chemical state of the whole galaxy and on the mass build-up in the galaxy bulge and disc . We present a two-dimensional analysis of NCG 3310, currently undergoing an intense starburst likely caused by a recent minor interaction, using data from the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey (PINGS). With data from a large sample of about a hundred HII regions identified throughout the disc and spiral arms we derive, using strong-line metallicity indicators and direct derivations, a rather flat gaseous abundance gradient. Thus, metal mixing processes occurred, as in observed galaxy interactions. Spectra from PINGS data and additional multiwavelength imaging were used to perform a spectral energy distribution fitting to the stellar emission and a photoionization modelling of the nebulae. The ionizing stellar population is characterized by single populations with a narrow age range (2.5-5 Myr) and a broad range of masses ($10^4-6times10^6 M_odot$). The effect of dust grains in the nebulae is important, indicating that 25-70% of the ultraviolet photons can be absorbed by dust. The ionizing stellar population within the HII regions represents typically a few percent of the total stellar mass. This ratio, a proxy to the specific star formation rate, presents a flat or negative radial gradient. Therefore, minor interactions may indeed play an important role in the mass build-up of the bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا