ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of the starburst merger galaxies NGC 3256 & NGC 3310

92   0   0.0 ( 0 )
 نشر من قبل Leigh Jenkins
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. P. Jenkins




اسأل ChatGPT حول البحث

We present XMM-Newton EPIC observations of the two nearby starburst merger galaxies NGC 3256 & NGC 3310. The broad-band (0.3-10 keV) integrated X-ray emission from both galaxies shows evidence of multi-phase thermal plasmas plus an underlying hard non-thermal power-law continuum. NGC 3256 is well-fit with a model comprising two MEKAL components (kT=0.6/0.9 keV) plus a hard power-law (Gamma=2), while NGC 3310 has cooler MEKAL components (kT=0.3/0.6 keV) and a harder power-law tail (Gamma=1.8). Chandra observations of these galaxies both reveal the presence of numerous discrete sources embedded in the diffuse emission, which dominate the emission above ~2 keV and are likely to be the source of the power-law emission. The thermal components show a trend of increasing absorption with higher temperature, suggesting that the hottest plasmas arise from supernova-heated gas within the disks of the galaxies, while the cooler components arise from outflowing galactic winds interacting with the ambient interstellar medium (ISM). We find no strong evidence for an active galactic nucleus (AGN) in either galaxy.

قيم البحث

اقرأ أيضاً

We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these t wo galaxies spanning 0.3-30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1-3 keV emission while ultraluminous X-ray sources (ULXs) dominate at E > 1-3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with Gamma ~ 2.6 at E > 5-7 keV, similar to the spectra of bright individual ULXs and other galaxies that have been studied by NuSTAR. We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGN or non-AGN in nature (e.g., ULXs or crowded X-ray sources that reach L2-10 keV ~ 10^40 erg/s cannot be ruled out). Combining our constraints on the 0.3-30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the SFR-normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes above 3-6 keV due to ULX populations. Our observations therefore constrain the average spectra of luminous accreting binaries (i.e., ULXs). This result is similar to the super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that NGC 3310 exhibits a factor of ~3-10 elevation of X-ray emission over the other star-forming galaxies. We argue that the excess is most likely explained by the relatively low metallicity of the young stellar population in NGC 3310.
In external galaxies, molecular composition may be influenced by extreme environments such as starbursts and galaxy mergers. To study such molecular chemistry, we observed the luminous-infrared galaxy and merger NGC 3256 using the Atacama Large Milli meter/sub-millimeter Array. We covered most of the 3-mm and 1.3-mm bands for a multi-species, multi-transition analysis. We first analyzed intensity ratio maps of selected lines such as HCN/HCO$^+$, which shows no enhancement at an AGN. We then compared the chemical compositions within NGC 3256 at the two nuclei, tidal arms, and positions with influence from galactic outflows. We found the largest variation in SiO and CH$_3$OH, species that are likely to be enhanced by shocks. Next, we compared the chemical compositions in the nuclei of NGC 3256, NGC 253, and Arp 220; these galactic nuclei have varying star formation efficiencies. Arp 220 shows higher abundances of SiO and HC$_3$N than NGC 3256 and NGC 253. Abundances of most species do not show strong correlation with the star formation efficiencies, although the CH$_3$CCH abundance seems to have a weak positive correlation with the star formation efficiency. Lastly, the chemistry of spiral arm positions in NGC 3256 is compared with that of W 51, a Galactic molecular cloud complex in a spiral arm. We found higher fractional abundances of shock tracers, and possibly also higher dense gas fraction in NGC 3256 compared with W 51.
78 - A. Akyuz , S. Kayaci , H. Avdan 2013
We present results from a study of the non-nuclear discrete sources in a sample of three nearby spiral galaxies (NGC 4395, NGC 4736, and NGC 4258) based on XMM-Newton archival data supplemented with Chandra data for spectral and timing analyses. A to tal of 75 X-ray sources has been detected within the D25 regions of the target galaxies. The large collecting area of XMM-Newton makes the statistics sufficient to obtain spectral fitting for 16 (about 20%) of these sources. Compiling the extensive archival exposures available, we were able to obtain the detailed spectral shapes of diverse classes of point sources. We have also studied temporal properties of these luminous sources. 11 of them are found to show short-term (less than 80 ks) variation while 8 of them show long-term variation within factors of ~ 2 to 5 during a time interval of ~ 2 to 12 years. Timing analysis provides strong evidence that most of these sources are accreting X-ray binary (XRB) systems. One source that has properties different than others was suspected to be a Supernova Remnant (SNR), and our follow-up optical observation confirmed it. Our results indicate that sources within the three nearby galaxies are showing a variety of source populations, including several Ultraluminous X-Ray Sources (ULXs), X-ray binaries (XRBs), transients together with a Super Soft Source (SSS) and a background Active Galactic Nucleus (AGN) candidate.
Aims: We present a study of the diffuse X-ray emission in the halo and the disc of the starburst galaxy NGC 253. Methods: After removing point-like sources, we analysed XMM-Newton images, hardness ratio maps and spectra from several regions in the ha lo and the disc. We introduce a method to produce vignetting corrected images from the EPIC pn data, and we developed a procedure that allows a correct background treatment for low surface brightness spectra, using a local background, together with closed filter observations. Results: Most of the emission from the halo is at energies below 1 keV. In the disc, also emission at higher energies is present. The extent of the diffuse emission along the major axis of the disc is 13.6 kpc. The halo resembles a horn structure and reaches out to ~9 kpc perpendicular to the disc. Disc regions that cover star forming regions, like spiral arms, show harder spectra than regions with lower star forming activity. Models for spectral fits of the disc regions need at least three components: two thermal plasmas with solar abundances plus a power law and galactic foreground absorption. Temperatures are between 0.1 and 0.3 keV and between 0.3 and 0.9 keV for the soft and the hard component, respectively. The power law component may indicate an unresolved contribution from X-ray binaries in the disc. The halo emission is not uniform, neither spatially nor spectrally. The southeastern halo is softer than the northwestern halo. To model the spectra in the halo, we needed two thermal plasmas with solar abundances plus galactic foreground absorption. Temperatures are around 0.1 and 0.3 keV. A comparison between X-ray and UV emission shows that both originate from the same regions.
We present new Space Telescope Imaging Spectrograph (STIS) observations of three spiral galaxies, NGC 4303, NGC 3310 and NGC 4258. The bright optical emission lines H$alpha$ $lambda$ $6564 AA$, [NII] $lambda$$lambda$ $6549,6585 AA$ and [SII] $lambda$ $lambda$ $ 6718,6732 AA$ were used to study the kinematics of the ionized gas in the nuclear region of each galaxy with a $sim 0.07arcsec$ spatial resolution. In NGC 3310, the observed gas kinematics is well matched by a circularly rotating disk model but we are only able to set an upper limit to the BH mass which, taking into account the allowed disk inclinations, varies in the range $5.0 times 10^{6} - 4.2 times 10^{7} M_{odot}$ at the 95% confidence level. In NGC 4303 the kinematical data require the presence of a BH with mass $M_{BH}=(5.0)^{+0.87}_{-2.26}times 10^{6}M_{odot}$ (for a disk inclination $i=70$ deg).In NGC 4258, the observed kinematics require the presence of a black hole with $M_{BH}= (7.9)^{+6.2}_{-3.5} times 10^{7}M_{odot}$ ($i=60$ deg). This result is in good agreement with the published value $(3.9 pm 0.1) times 10^{7} M_{odot}$, derived from $H_{2}O$-maser observations. Our attempt at measuring BH masses in these 3 late type Sbc spiral galaxies has shown that these measurements are very challenging and at the limit of the highest spatial resolution currently available. Nonetheless our estimates are in good agreement with the scaling relations between black holes and their host spheroids suggesting that (i) they are reliable and (ii) black holes in spiral galaxies follows the same scaling relations as those in more massive early-type galaxies. A crucial test for the gas kinematical method, the correct recovery of the known BH mass in NGC 4258, has been successful. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا