ترغب بنشر مسار تعليمي؟ اضغط هنا

The INTEGRAL Burst Alert System: Results and Future Perspectives

57   0   0.0 ( 0 )
 نشر من قبل Sandro Mereghetti
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The INTEGRAL Burst Alert System (IBAS) is the software for real time detection of Gamma Ray Bursts (GRBs) and the rapid distribution of their coordinates. IBAS has been running almost continuously at the INTEGRAL Science Data Center since the beginning of the INTEGRAL mission, yielding up to now accurate localizations for 12 GRBs detected in the IBIS field of view. IBAS is able to provide error regions with radius as small as 3 arcminutes (90% c.l.) within a few tens of seconds of the GRB start. We present the current status of IBAS, review the results obtained for the GRBs localized so far, and briefly discuss future prospects for using the IBAS real time information on other classes of variable sources.


قيم البحث

اقرأ أيضاً

184 - S. Schanne 2014
The ESA M3 candidate mission LOFT (Large Observatory For x-ray Timing) has been designed to study strong gravitational fields by observing compact objects, such as black-hole binaries or neutron-star systems and supermassive black-holes, based on the temporal analysis of photons collected by the primary instrument LAD (Large Area Detector), sensitive to X-rays from 2 to 50 keV, offering a very large effective area (>10 m 2 ), but a small field of view ({o}<1{deg}). Simultaneously the second instrument WFM (Wide Field Monitor), composed of 5 coded-mask camera pairs (2-50 keV), monitors a large part of the sky, in order to detect and localize eruptive sources, to be observed with the LAD after ground-commanded satellite repointing. With its large field of view (>{pi} sr), the WFM actually detects all types of transient sources, including Gamma-Ray Bursts (GRBs), which are of primary interest for a world-wide observers community. However, observing the quickly decaying GRB afterglows with ground-based telescopes needs the rapid knowledge of their precise localization. The task of the Loft Burst Alert System (LBAS) is therefore to detect in near- real-time GRBs (about 120 detections expected per year) and other transient sources, and to deliver their localization in less than 30 seconds to the observers, via a VHF antenna network. Real-time full resolution data download to ground being impossible, the real-time data processing is performed onboard by the LBOT (LOFT Burst On-board Trigger system). In this article we present the LBAS and its components, the LBOT and the associated ground-segment.
91 - Erika De Lucia 2011
Precise measurements of semileptonic kaon decay rates at KLOE provide the measurement of the CKM mixing matrix element vus and information about lepton universality. Leptonic kaon decays provide an independent measurement of $abs{vus}^2/abs{vud}^2$, through the ratio $Gamma(Ktomu u)/Gamma(pitomu u)$. These measurements, together with the result of $|vud|$ from nuclear $beta$ transitions, provide the most precise test of CKM unitarity, allowing the universality of lepton and quark weak couplings to be tested. After the completion of the KLOE data taking, the proposal of a new run with an upgraded KLOE detector, KLOE-2, at an upgraded Dafne machine has been accepted by INFN and it is now starting. Present results from KLOE and future perspectives from KLOE-2 are reported.
The increasing precision of spacecraft radiometric tracking data experienced in the last number of years, coupled with the huge amount of data collected and the long baselines of the available datasets, has made the direct observation of Solar System dynamics possible, and in particular relativistic effects, through the measurement of some key parameters as the post-Newtonian parameters, the Nordtvedt parameter eta and the graviton mass. In this work we investigate the potentialities of the datasets provided by the most promising past, present and future interplanetary missions to draw a realistic picture of the knowledge that can be reached in the next 10-15 years. To this aim, we update the semi-analytical model originally developed for the BepiColombo mission, to take into account planet-planet relativistic interactions and eccentricity-induced effects and validate it against well-established numerical models to assess the precision of the retrieval of the parameters of interest. Before the analysis of the results we give a review of some of the hypotheses and constrained analysis schemes that have been proposed until now to overcome geometrical weaknessess and model degeneracies, proving that these strategies introduce model inconsistencies. Finally we apply our semi-analytical model to perform a covariance analysis on three samples of interplanetary missions: 1) those for which data are available now (e.g. Cassini, MESSENGER, MRO, Juno), 2) in the next years (BepiColombo) and 3) still to be launched as JUICE and VERITAS (this latter is waiting for the approval).
To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11 years up through GRB151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html . In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (~ 2% of the BAT GRBs) in this search with confirmed emission beyond ~ 1000 s of event data, and only two GRBs (GRB100316D and GRB101024A) with detections in the survey data prior to the starting of event data. (Some figures shown here are in lower resolution due to the size limit on arXiv. The full resolution version can be found at http://swift.gsfc.nasa.gov/results/batgrbcat/3rdBATcatalog.pdf )
The AGILE Science Alert System has been developed to provide prompt processing of science data for detection and alerts on gamma-ray galactic and extra galactic transients, gamma-ray bursts, X-ray bursts and other transients in the hard X-rays. The s ystem is distributed among the AGILE Data Center (ADC) of the Italian Space Agency (ASI), Frascati (Italy), and the AGILE Team Quick Look sites, located at INAF/IASF Bologna and INAF/IASF Roma. We present the Alert System architecture and performances in the first 2 years of operation of the AGILE payload.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا