ﻻ يوجد ملخص باللغة العربية
The increasing precision of spacecraft radiometric tracking data experienced in the last number of years, coupled with the huge amount of data collected and the long baselines of the available datasets, has made the direct observation of Solar System dynamics possible, and in particular relativistic effects, through the measurement of some key parameters as the post-Newtonian parameters, the Nordtvedt parameter eta and the graviton mass. In this work we investigate the potentialities of the datasets provided by the most promising past, present and future interplanetary missions to draw a realistic picture of the knowledge that can be reached in the next 10-15 years. To this aim, we update the semi-analytical model originally developed for the BepiColombo mission, to take into account planet-planet relativistic interactions and eccentricity-induced effects and validate it against well-established numerical models to assess the precision of the retrieval of the parameters of interest. Before the analysis of the results we give a review of some of the hypotheses and constrained analysis schemes that have been proposed until now to overcome geometrical weaknessess and model degeneracies, proving that these strategies introduce model inconsistencies. Finally we apply our semi-analytical model to perform a covariance analysis on three samples of interplanetary missions: 1) those for which data are available now (e.g. Cassini, MESSENGER, MRO, Juno), 2) in the next years (BepiColombo) and 3) still to be launched as JUICE and VERITAS (this latter is waiting for the approval).
One century after its formulation, Einsteins general relativity has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and
In order for a modified gravity model to be a candidate for cosmological dark energy it has to pass stringent local gravity experiments. We find that a Brans-Dicke (BD) theory with well-defined second order corrections that include the Gauss-Bonnet t
This lecture will present a review of the past and present tests of the General Relativity theory. The essentials of the theory will be recalled and the measurable effects will be listed and analyzed. The main historical confirmations of General Rela
Gravitational-wave sources offer us unique testbeds for probing strong-field, dynamical and nonlinear aspects of gravity. In this chapter, we give a brief overview of the current status and future prospects of testing General Relativity with gravitat
The paper discusses the optimal conguration of one or more ring lasers to be used for measuring the general relativistic effects of the rotation of the earth, as manifested on the surface of the planet. The analysis is focused on devices having their