ﻻ يوجد ملخص باللغة العربية
We describe observations of a galaxy in the field of the $z=2.483$ radio galaxy 4C 23.56, photometrically selected to have a spectral-energy distribution consistent with an old stellar population at the redshift of the radio galaxy. Exploration of redshift--stellar-population-reddening constraints from the photometry indicates that the galaxy is indeed at a redshift close to that of 4C23.56, that the age of the most recent significant star formation is roughly >~2 Gyr, and that reddening is fairly modest, with more reddening required for the younger end of stellar age range. From analysis of a deep adaptive-optics image of the galaxy, we find that an r^1/4-law profile, common for local spheroidal galaxies, can be excluded quite strongly. On the other hand, a pure exponential profile fits remarkably well, while the best fit is given by a Sersic profile with index n=1.49. Reconstruction of the two-dimensional form of the galaxy from the best-fit model is consistent with a disk galaxy with neither a significant bulge component nor gross azimuthal structure. The assembly of roughly 2L* of old stars into such a configuration this early in the history of the universe is not easily explainable by any of the currently popular scenarios for galaxy formation. A galaxy with these properties would seem to require smooth but rapid infall of the large mass of gas involved, followed by a burst of extremely vigorous and efficient star formation in the resulting disk.
We present the results of NICMOS imaging of two massive galaxies photometrically selected to have old stellar populations at z ~ 2.5. Both galaxies are dominated by apparent disks of old stars, although one of them also has a small bulge comprising a
We describe a study of morphologies of galaxies with old stellar populations in radio-source fields at z ~ 2.5. A significant fraction of these are dominated by disks of old stars, and none we have found so far has the properties of present-epoch ell
Spiral galaxies dominate the local galaxy population. Disks are known to be fragile with respect to collisions. Thus it is worthwhile to probe under which conditions a disk can possibly survive such interactions. We present a detailed morpho-kinemati
Context. The study of high redshift Tully-Fisher relations (TFRs) is limited by the use of long slit spectrographs, rest frame B band and star formation selected galaxies. Aims. We try to circumvent these issues by using integral field spectroscopy (
We have made a statistically complete, unbiased survey of C IV systems toward a region of high QSO density near the South Galactic Pole using 25 lines of sight spanning $1.5<z<2.8$. Such a survey makes an excellent probe of large-scale structure at e