ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphologies of Two Massive Old Galaxies at z ~ 2.5

352   0   0.0 ( 0 )
 نشر من قبل Alan Stockton
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of NICMOS imaging of two massive galaxies photometrically selected to have old stellar populations at z ~ 2.5. Both galaxies are dominated by apparent disks of old stars, although one of them also has a small bulge comprising about 1/3 of the light at rest-frame 4800 A. The presence of massive disks of old stars at high redshift means that at least some massive galaxies in the early universe have formed directly from the dissipative collapse of a large mass of gas. The stars formed in disks like these may have made significant contributions to the stellar populations of massive spheroids at the present epoch.



قيم البحث

اقرأ أيضاً

We describe a study of morphologies of galaxies with old stellar populations in radio-source fields at z ~ 2.5. A significant fraction of these are dominated by disks of old stars, and none we have found so far has the properties of present-epoch ell ipticals. Recent Spitzer IRAC data confirms that at least one of our prime examples is definitely not a reddened star-forming galaxy.
We describe observations of a galaxy in the field of the $z=2.483$ radio galaxy 4C 23.56, photometrically selected to have a spectral-energy distribution consistent with an old stellar population at the redshift of the radio galaxy. Exploration of re dshift--stellar-population-reddening constraints from the photometry indicates that the galaxy is indeed at a redshift close to that of 4C23.56, that the age of the most recent significant star formation is roughly >~2 Gyr, and that reddening is fairly modest, with more reddening required for the younger end of stellar age range. From analysis of a deep adaptive-optics image of the galaxy, we find that an r^1/4-law profile, common for local spheroidal galaxies, can be excluded quite strongly. On the other hand, a pure exponential profile fits remarkably well, while the best fit is given by a Sersic profile with index n=1.49. Reconstruction of the two-dimensional form of the galaxy from the best-fit model is consistent with a disk galaxy with neither a significant bulge component nor gross azimuthal structure. The assembly of roughly 2L* of old stars into such a configuration this early in the history of the universe is not easily explainable by any of the currently popular scenarios for galaxy formation. A galaxy with these properties would seem to require smooth but rapid infall of the large mass of gas involved, followed by a burst of extremely vigorous and efficient star formation in the resulting disk.
We have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ~200 of the most massive (M_star > 10^11 M_solar) galaxies at 1<z<3 in the CANDELS-UDS field. We find that, while s uch massive galaxies at low redshift are generally bulge-dominated, at redshifts 1<z<2 they are predominantly mixed bulge+disk systems, and by z>2 they are mostly disk-dominated. Interestingly, we find that while most of the quiescent galaxies are bulge-dominated, a significant fraction (25-40%) of the most quiescent galaxies, have disk-dominated morphologies. Thus, our results suggest that the physical mechanisms which quench star-formation activity are not simply connected to those responsible for the morphological transformation of massive galaxies.
91 - E. Le Floch 2004
We present preliminary results on 24micron detections of luminous infrared galaxies at z>1 with the Multiband Imaging Photometer for Spitzer (MIPS). Observations were performed in the Lockman Hole and the Extended Groth Strip (EGS), and were suppleme nted by data obtained with the Infrared Array Camera (IRAC) between 3 and 9microns. The positional accuracy of ~2arcsec for most MIPS/IRAC detections provides unambiguous identifications of their optical counterparts. Using spectroscopic redshifts from the Deep Extragalactic Evolutionary Probe survey, we identify 24micron sources at z>1 in the EGS, while the combination of the MIPS/IRAC observations with $BVRIJHK$ ancillary data in the Lockman Hole also shows very clear cases of galaxies with photometric redshifts at 1<z<2.5. The observed 24micron fluxes indicate infrared luminosities greater than 10^11 L_sol, while the data at shorter wavelengths reveal rather red and probably massive (M>=M*) galaxy counterparts. It is the first time that this population of luminous objects is detected up to z~2.5 in the infrared. Our work demonstrates the ability of the MIPS instrument to probe the dusty Universe at very high redshift, and illustrates how the forthcoming Spitzer deep surveys will offer a unique opportunity to illuminate a dark side of cosmic history not explored by previous infrared experiments.
345 - S. Noll , D. Pierini , M. Pannella 2007
Fundamental properties of the extinction curve, like the slope in the rest-frame ultraviolet (UV) and the presence/absence of a broad absorption excess centred at 2175 A (the UV bump), are investigated for a sample of 108 massive, star-forming galaxi es at 1 < z < 2.5, selected from the FDF Spectroscopic Survey, the K20 survey, and the GDDS. These characteristics are constrained from a parametric description of the UV spectral energy distribution (SED) of a galaxy, as enforced by combined stellar population and radiative transfer models for different geometries, dust/stars configurations and dust properties. In at least one third of the sample, there is a robust evidence for extinction curves with at least a moderate UV bump. The presence of the carriers of the UV bump is more evident in galaxies with UV SEDs suffering from heavy reddening. We interpret these results as follows. The sample objects possess different mixtures of dust grains and molecules producing extinction curves in between the average ones of the Small and Large Magellanic Cloud, where the UV bump is absent or modest, respectively. Most of the dust embeds the UV-emitting stellar populations or is distributed out of the galaxy mid-plane. Alternatively, even dust with a pronounced UV bump, as for the average Milky-Way extinction curve, can be present and distributed in the galaxy mid-plane. In this case, variations of the continuum scattering albedo with wavelength or an age-dependent extinction are not sufficient to explain the previous trend with reddening. Hence, additional extraplanar dust has to be invoked. The data suggest that the carriers of the UV bump are associated with intermediate-age stellar populations, while they survive in the harshest UV-radiation fields owing to dust self-shielding. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا