ﻻ يوجد ملخص باللغة العربية
We present an extensive set of stellar population synthesis models, which self-consistently include the (optical--far-UV) continuum emission from stars as well as the resulting emission-line spectrum from photoionized gas surrounding massive stars during their main sequence life-time. The models are presented as a compiled library, ADEMIS, available electronically. ADEMIS contains the equivalent widths and the intensities of the lines [OII]3727, Hbeta, [OIII]5007, Halpha, [NII]6584, which were calculated assuming a metallicity of 0.2, 0.4, 1.0, and 1.5 Zo and a wide range of ionization parameters. We investigate the regime of continuous star formation, assuming a Salpeter initial mass function, whose upper mass limit is an input parameter. The calculated equivalent width models, which are function of the burst age, are compared with the Jansen et al. atlas of integrated spectra for nearby galaxies. We reproduce the observed properties of galaxies along the full Hubble sequence and suggest how the metallicity and age of such galaxies might be be roughly estimated.
We present a model for nebular emission in star forming galaxies, which takes into account the effects of dust reprocessing. The nebular emissions have been computed with CLOUDY and then included into GRASIL, our spectrophotometric code specifically
[Abridged]. We present SEDs for single-age, single-metallicity stellar populations (SSPs) covering the optical range at resolution 2.3A (FWHM). These SEDs constitute our base models, as they combine scaled-solar isochrones with MILES empirical stella
We present new evolutionary synthesis models for Single Stellar Populations covering a wide range in age and metallicity. The most important difference with existing models is the use of NLTE atmosphere models for the hot stars (O, B, WR, post-AGB st
We use the first release of the SDSS/MaStar stellar library comprising ~9000, high S/N spectra, to calculate integrated spectra of stellar population models. The models extend over the wavelength range 0.36-1.03 micron and share the same spectral res
We summarize the principles and fundamental ingredients of evolutionary synthesis models, which are stellar evolution, stellar atmospheres, the IMF, star-formation histories, nebular emission, and also attenuation from the ISM and IGM. The chapter fo