ﻻ يوجد ملخص باللغة العربية
We present a model for nebular emission in star forming galaxies, which takes into account the effects of dust reprocessing. The nebular emissions have been computed with CLOUDY and then included into GRASIL, our spectrophotometric code specifically developed for dusty galaxies. The interface between nebular emission and population synthesis is based on a set of pre-computed HII region emission models covering a wide range of physical quantities. Concerning the extinction properties of normal star forming galaxies, we are able to interpret the observed lack of correlation between the attenuation measured at Halpha and in the UV band as a consequence of age selective extinction. We also find that, for these galaxies with modest SFR, the ratio FIR/UV provides the best constraints on the UV attenuation. Our model also allows to deal with different SFR estimators in a consistent way, from the UV to radio wavelengths, and to discuss the uncertainties arising from the different physical conditions encountered in star forming galaxies. We provide our best estimates of SFR/luminosity calibrations, together with their expected range of variation. It results that SFR derived through Halpha, even when corrected for extinction using the Balmer decrement, is affected by important uncertainties due to age selective extinction. Another remarkable result is that SFR from UV luminosity corrected by means of the ratio FIR/UV has a small uncertainty. Finally, our model provides a calibration of SFR from radio luminosity; we are also able to reproduce the observed FIR/radio ratio.
Star forming galaxies exhibit a variety of physical conditions, from quiescent normal spirals to the most powerful dusty starbursts. In order to study these complex systems, we need a suitable tool to analyze the information coming from observations
Optical nebular emission lines are commonly used to estimate the star formation rate of galaxies and the black hole accretion rate of their central active nucleus. The accuracy of the conversion from line strengths to physical properties depends upon
Galaxies occupy different regions of the [OIII]$lambda5007$/H$beta$-versus-[NII]$lambda6584$/H$alpha$ emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, f
We present an extensive set of stellar population synthesis models, which self-consistently include the (optical--far-UV) continuum emission from stars as well as the resulting emission-line spectrum from photoionized gas surrounding massive stars du
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model